Unustasid parooli?



     
Sisseloginud kasutajatele märgistatakse automaatselt teksti piirkonnad, mis on muutunud alates viimasest lugemisest. Lisandunud osa on roheline, eemaldatud osa punane.
Lisaks märgistatakse sisseloginud kasutajatele menüüs täiendavate värvide abil artiklid, mis on kasutajal loetud (hall), ning artiklid, mis on peale lugemist täienenud (roheline).

   

     

Pealkiri :
Id (lühend aadressiribale) :
Autor ja viimase muudatuse autor :
Loomise aeg ja viimane muudatus :
Teksti pikkus :
Luba ligipääs ainult kasutajanimedele (eralda komadega). Autoril on alati ligipääs. :




Knapsack problem
 
 
Teooria
* http://en.wikipedia.org/wiki/Knapsack_problem - The knapsack problem with each type of item j having a distinct value per unit of weight (vj = pj/wj) is considered one of the easiest NP-complete problems. Indeed empirical complexity is of the order of O((log n)2) and very large problems can be solved very quickly, e.g. in 2003 the average time required to solve instances with n = 10,000 was below 14 milliseconds using commodity personal computers[1]. However in the degenerate case of multiple items sharing the same value vj it becomes much more difficult with the extreme case where vj = constant being the subset sum problem with a complexity of O(2N/2N).
* http://or.journal.informs.org/cgi/content/abstract/15/1/83 - Methods for the Solution of the Multidimensional 0/1 Knapsack Problem. 
The multidimensional problem is usually reduced to a one-dimensional one by use of Lagrangian Multipliers that, however, do not generally yield the exact solution to the problem posed. Here some new algorithms are developed that are applied within a dynamic programming framework. Additionally, the methods make integral use of an interactive computer system in which the heuristics of the problem solver are applied and changed as the character of the solution process evolves.
* http://www.diku.dk/hjemmesider/ansatte/pisinger/ - hunnik slaide ja asju optimiseerimisprobleemidest
* http://www.diku.dk/OLD/publikationer/tekniske.rapporter/rapporter/03-08.pdf - "Where are the hard knapsack problems?", Pisinger 2003
* http://espace.library.curtin.edu.au/dtl_publish/50/11692.html - "Algorithms for some hard knapsack problems" 
 
 
Programmid
* http://www.diku.dk/hjemmesider/ansatte/pisinger/codes.html - hulk knapsack lahendajaid C koodis, autor David Pisinger.
... The decomp algorithm solves the Subset-sum Problem through a kind of Horowitz-Sahni decomposition ...
Sisaldab ka Quadratic Knapsack Problems lahendajaid
* http://www.mathworks.com/matlabcentral/fileexchange/20436 - Multi-Knapsack solver - sisaldab C koodis mooduleid. Kasutab stohhastilisi meetodeid
An efficient Algorithm for Rare-Event Probability Estimation, Combinatorial,
Optimization, and Counting"  ---  Z. I. Botev, D. P. Kroese, Methodology and Computing in Applied Probability, vol. 10
* http://archives.devshed.com/forums/research-131/matlab-code-for-knapsack-problems-316825.html - ... combo algorithm of Pisinger et. al. ... Alternatively, you could try another MIP solver with a matlab interface e.g Mosek.
Greedy Algorithm - keep taking most valuable items until maximum weight is reached
Not-So-Greedy Algorithm - Greedy Algorithm, then throw out heaviest item, continue Greedy Algorithm
... Not-So-Greedy Algorithm seemed to result in a bit better sums
* http://www.pilat.org/projects.php - geneetiline algoritm
* http://en.pudn.com/downloads10/doc/detail37427_en.html - C++ keeles. ... five small programs, namely : 0-2-1 knapsack problem, the binary tree traversal and the chain table and that the realization of the maze path, the optimal resource allocation algorithm. Every procedure is described in detail in, I was doing it two semesters of part of the experiment.
* http://www.math.uu.nl/people/beukers/deelsom/deelsom.html - mingi Java Applet vormis demo programm 
* http://download.gna.org/pyasukp/ - Yet Another solver for the Unbounded Knapsack Problem.
* http://web.archive.org/web/20080211110125/http://www.bianchiniandrea.it/abssp.asp - väidab, et suudab lahendada täpselt, keerukus paistab olevat O(n2). Andrea Bianchini proved that P is equal to NP, by constructing a polynomial time exact algorithm for the NP-hard SubsetSum problem. - http://www.win.tue.nl/~gwoegi/P-versus-NP.htm
* TODO: minu enda ligikaudse kuid enamasti (?) täpse 0-1 knapsack lahendaja kood, mis töötab lineaarse ajaga (tööaeg sõltub ligikaudu lineaarselt muutujate arvust) ka "degenerate" juhtumitel (ehk "subset sum problem" korral) ning on ka sõbraliku mälukasutusega
 
 
Jõudlus
 
 
Artikleid ja raamatuid
* http://www.springerlink.com/content/1l1r80463x343063/ - A branch-and-price algorithm for the two-dimensional level strip packing problem 
* http://www.springerlink.com/content/3m48pl8p7h5nq6f9/ - An Experimental Study of Random Knapsack Problems
 
 
Tarkvara
* http://www.mosek.com/ - MOSEK Optimization Software
* http://www.solver.com/ - Excel solver, Optimization software, Monte Carlo simulation
 
 
Muud optimiseerimisprobleemid
 
 
Rakendusi
* http://www.springerlink.com/content/mrt5056212347k02/ - Optimization Problems in the Simulation of Multifactor Portfolio Credit Risk 
*
 
 
Üldised optimiseerimismeetodid ja probleemid
* http://www.win.tue.nl/~gwoegi/P-versus-NP.htm - viited artiklitele, mis väidavad või tõestavad et P=NP või vastupidi
 
 
Muud MATLABi koodijupid
 
 
 
 
 
 

kommentaarium spämmi tõttu ajutiselt välja lülitatud





Teised tekstid samas jaotuses:  ||  GPGPU  ||  Teisi tegelasi  ||  Hierarchical Temporal Memory  ||  Baka arendus, uurida  ||  

Alajaotused:  ||  Krüpto murdmine  ||  Constraint satisfaction  ||  



  Saada kiri