
been achieved using the right productions. It is not
clear at this stage whether this is important. Further,
induction of natural language grammars may include
additional constraints on evaluation, such as psycho-
logical plausibility and generative capacity. Metrics
for these properties might prove subjective.

References

[1] T.C. Bell, J.G. Cleary, and I.H. Witten. Text
Compression. Prentice Hall, Englewood Cliffs,
New Jersey, 1990.

[2] T.C. Bell, I.H. Witten, and J.G. Cleary. Model-
ing for text compression. Computing Surveys,
21(4):557–591, December 1989.

[3] R. C. Berwick and S. Pilato. Learning syntax by
automata induction. Machine Learning, 2(1):9–
38, 1987.

[4] D. Conklin and I.H. Witten. Complexity-based
induction. Machine Learning, 16(3), in press.

[5] J. A. Feldman. Some decidability results on
grammatical inference and complexity. AI
Memo 93.1, Computer Science Dept., Stanford
University, Stanford, California, 1970.

[6] E. M. Gold. Language identification in the limit.
Information Control, 10:447–474, 1967.

[7] George W. Hart. Minimum Information Estima-
tion of Structure. PhD thesis, MIT, Cambridge,
MA, April 1987. LIDS-TH-1664.

[8] J. J. Horning. A study of grammatical inference.
PhD thesis, Computer Science Dept., Stanford
University, Stanford, California, 1969.

[9] D.A. Huffman. A method for the construction
of minimum-redundancy codes. Proc. Institute
of Electrical and Radio Engineers, 40(9):1098–
1101, September 1986.

[10] A. Moffat. Implementing the PPM data com-
pression scheme. IEEE Trans Communications,
COM-38(11):1917–1921, November 1990.

[11] C. G. Nevill-Manning, I. H. Witten, and D. L.
Maulsby. Compression by induction of hier-
archical grammars. Proc Data Compression
Conference, edited by J.A. Storer and M. Cohn,
pp. 244–253. IEEE Press, Los Alamitos, CA

[12] T. W. Pao and J. W. Carr. A solution of the
syntactical induction-inference problem for reg-
ular languages. Computer Languages, 3:53–64,
1978.

[13] R. Solomonoff. A new method for discover-
ing the grammars of phrase structure languages.
Information Processing, pages 258–290, June
1959.

[14] I.H. Witten and J.G. Cleary. Inductive model-
ing for data compression. Proc Fourth Interna-
tional Symposium on Modelling and Simulation
Methodology, January 1987.

mar outlined in the previous section, we might supply
the generator with the following sequence of keys.

0 1

This directs the generator to select the first produc-
tion (using a zero base) for the instantiation of

�
and

subsequently the second production for
�

.
To generate the training sequence using the second

grammar requires provision of a sequence of indices
which allow the generator to select the correct words
from the vocabulary and concatenate them into the
appropriate strings. For example, the following vo-
cabulary is garnered from the training set (note that
the full-stop must be included in this grammar).�����

the . cat hugged dog kissed �
Using this we would supply the following key se-
quence to the generator.

0 2 3 0 4 1 4 5 0 2 1

To generate the trainingset using the thirdgrammar
requires the following key sequence.

0 1 1 1 0 0

It is important to note that the range of values for
the keys depends not on the number of terminal sym-
bols (i.e. words) contained in the language, but on
the range of choices available to the grammar at each
possible branch. Thus, for the first grammar, only one
of two possible instantiations for

�
must be indicated:

use the first production or the second. We can mea-
sure (in bits) the amount of information required for
reconstruction as

�� 	

 1 � log2 �

	

where
 is the number of choices that must be made
during production, and �

	
is the probability of the

desired instantiation being selected. For our explicit
grammar example, two choices must be made: which
rule for

�
to use first, and which second. If we assume

that each production is equiprobable, then the amount
of disambiguation information can be expressed as

� log2 1 � 2 � log2 1 � 2
.

More plainly, at each point of production we must
decide whether to use the first rewrite rule or the
second, and we must do this twice—two bits total.
That is, we could use a “0” bit to indicate select the
first production and a “1” bit to indicate select the
second.

For the V* grammar, each instantiationhas six pos-
sible alternatives. Once again (assuming equiproba-
bility for each alternative) requires 11 � � log2 1 � 6,
or about 29 bits. And finally, as all choices within the
third grammar entail one of two possible alternatives,
we would need 6 � � log2 1 � 2, or 6 bits to encode the
disambiguation information.

The total complexity with respect to the training set
is the combined value for the complexity of the gram-
mar and the disambiguation information. The results
obtained for the example grammars are outlined in
Table 1.

grammar measure of disambiguation total
complexity information complexity

1 91.0 2.0 93.0
2 55.5 29.6 85.1
3 94.9 6.0 100.9

Table 1: Complexity values for the sample grammars.

As previously noted, possible instantiations are
rarely equiprobable, and this fact can be used to im-
prove the predictive power of each grammar and thus
reduce the amount of disambiguation information re-
quired. Techniques such as Huffman coding [9] or
arithmetic coding [2, 10, 14] give optimum encod-
ings for such decisions.

Conclusions

The minimum goal of grammatical inference is to pro-
duce a compact grammar general enough to accept all
well-formed expressions of a language without ad-
mitting those that are malformed. There appears to
be no shortage of methods by which grammars may
be inferred. The challenge is to establish a formal
method for testing the effectiveness of the grammars
obtained. We argue that the complexity of the gram-
mar measured with respect to the set of expressions
used to derive it is a rigorous and objective method of
evaluation.

Two final comments. It is not entirely clear how dis-
ambiguation information applies to ambiguous gram-
mars. That is, if more than one parse exists for a
given expression, the information necessary to recon-
struct that expression would not indicate if this had

Inference
 Engine

Generator

keys

grammar
texttext

Figure 1: Inference/Generation process.

These three types of grammars are of different
sizes, and, more importantly, their size grows in dif-
ferent ways as the corpus of text from which they are
generated increases. The first includes a production
for each (distinct) sentence in the corpus, and hence
is approximately the same size as the corpus. The
second is the smallest possible grammar, and works
for any corpus of example strings independent of its
size or structure. The third grammar is of intermedi-
ate size. In this very small example it is no smaller
than the first one, but in a more realistic situation, with
more example strings, the first grammar will be much
larger. The third grammar will continue to grow as the
corpus does because of the continued appearance of
new syntactic constructions, though its rate of growth
will steadily decline.

The size of a grammar can be quantified in dif-
ferent ways. One is to simply count the number of
characters it contains. However, this is strongly af-
fected by the number of characters used to express
non-terminals—for instance, whether we write “NP”
or “Noun-Phrase”. To avoid this dependence on irrel-
evant details of representation, abstract identifiers can
be used to denote non-terminals. Moreover, terminals
can be placed in a lexicon—which willbe the same for
all grammars for a given corpus—and replaced in the
grammar by pointers into the lexicon. This provides a
“representation-independent” measure for the size of
a grammar, which is essentially a count of the number
of symbols (rather than characters) that it contains.

Unfortunately, this measure is distorted by the fact
that common and uncommon symbols consume the
same amount of space. For example, in the first
grammar a word like “the” will appear more often
than, say, “kissed”; similarly, in the third grammar,
some non-terminals will be much more frequent than
others. A more realistic measure of size can be ob-
tained by taking into account the relative frequencies
of the symbols, and noting that common symbols can
be represented more efficiently than rare ones.

A straightforward way of doing this is to augment
the lexicon, and the list of non-terminal symbols, with
frequency counts that reflect how often they occur,

and adding the number of bits required to code the
symbol—that is, � log2 � where � is its probability—
each time it appears in the grammar. However, the
need to store these frequency counts must be taken
into account when calculating the amount of space
occupied by the grammar. A more elegant way of
achieving the same effect is to count symbols adap-
tively as they are encoded, so that the first time a sym-
bol is seen it is encoded with a count of 1, the second
time with a count of 2, and so on. This stratagem
eliminates the need to record the counts explicitly.
More details can be found in [1].

In practice, we find the size by translating the
context-free grammar into a Prolog program and then
use a general purpose program we have written for
computing the complexity of Prolog programs. The
complexity values obtained for the three example
grammars are included in Table 1.

Disambiguation information

Grammars are used by parsers, generators, compilers,
interpreters and a host of other language processing
systems, both natural and artificial. A grammar is
a generalisation of the structure of a language: this
implies that additional information must be provided
in any generative application. For example, if a par-
ticular proposition is to be presented in a specific sur-
face form, the generator must be given disambiguation
clues at each decision point of the grammar so that
it can select appropriate instantiations. The amount
of disambiguation information required for such pro-
cesses is a measure of the utilityof the grammar itself.

Consider a situation where we want to generate
precisely the training sequence. We can view the
Inference/Generation process as something like that
shown in Figure 1. The inference engine derives
a grammar (according to some specified algorithm)
from the sample strings, producing with it a set of keys
(or indices) that indicate the instantiations necessary
for reproducing the training set.

To generate the training set using the explicit gram-

lations of the following principal components:

� The hypothesis space: the general set of rewrite
rules that are to be considered—i.e. the candi-
date classes of grammars.

� The presentation criteria: in what order will ex-
amples be presented?—n.b. each string must
eventually be seen.

� A criterion for success: when has the limit been
reached?

� A measure of adequacy: the hypothesis must ac-
count for all sample strings plus all other strings
generated by the grammar.

� Minimum complexity requirement: how tightly
should the inferred grammar fit the target lan-
guage?

The first three components pertain to the inference
algorithm, to which much energy has been directed—
such as Solomonoff’s basic cycle detection method
[13], implemented as Nevill-Manning’s Hierarchical
Grammar [11], which focuses on identifying the re-
cursive features of a language; Horning’s [8] enumer-
ative technique for constructing context-free gram-
mars; Pao’s [12] finite-state machine reduction; or
Berwick and Pilato’s [3] k-reversible language tech-
nique.

Feldman’s other two principles pertain to testing the
quality of the inferred grammar. While the need to
address these aspects of the formulation are generally
acknowledged, little has been done to develop formal
methods by which they can be measured.

Quality metrics for inferred grammars

In this paper we describe two methods for obtaining
objective measures of the quality of inferred gram-
mars. This work parallels more general work on the
evaluation of theories using complexity-based induc-
tion [4]. The first measure, developed along the lines
of Hart’s [7] Minimum Information (MI) estimator,
seeks to calculate the complexity of the grammar in
terms of the information content of its formalism.
Context-free grammars are translated into Prolog pro-
grams and analysed by a single general estimator.

Useful grammars must be able to account for strings
other than those within the training set,but without ad-
mitting strings not in the language of the source gram-
mar. Therefore a second objective metric is described

to measure the amount of disambiguation informa-
tion necessary for the grammar to generate exactly
the training set.

Complexity

To illustrate how a complexity metric may be applied
to an inferred grammar, consider the following sample
strings.

The cat kissed the dog.

The dog hugged the cat.

The most specific grammar that we can infer for this
trainingset would simply provide production rules for
each individual string, as with� �

The cat kissed the dog.� �
The dog hugged the cat.

This grammar makes strong predictions about strings
it has already seen, but its capacity for generalisa-
tion is very weak—non-existent, in fact, for it cannot
predict any unseen expression.

In contrast, the most general grammar we can infer
from the training set would be� � � �

� � �
where

�
is the vocabulary demonstrated in the sam-

ple expressions. This V* (vee-star) grammar is cer-
tainly capable of predicting all sentences of the source
language. In fact, it accepts any arbitrary sequence
of words from the vocabulary of the language, and
consequently obviates the notion of grammaticality
through its failure to reject malformed expressions.

In between these extremes are grammars that cover
the training set and predict unseen well-formed ex-
pressions and reject sentences not in the source lan-
guage. For example,

S
�

NP VP
NP

�
The N

N
�

cat � dog
VP

�
V NP

V
�

hugged � kissed

accounts for the training set, but is also able to predict
the sentence The dog kissed the cat, and a variety of
other unseen sentences (hypothetically) contained in
the language. Equally important, this grammar will
also reject presumably malformed sentences like The
dog cat the dog.

Objective Evaluation of Inferred Context-Free Grammars

Tony C. Smith Ian H. Witten John Cleary Shane Legg

Department of Computer Science, University of Waikato, Hamilton, New Zealand
Email tcs@waikato.ac.NZ; phone: +64 (7) 838–4453; fax: +64 (7) 838–4155

July, 1994

An infinite number of context-free grammars may be
inferred from a given training set. The defensibility of
any single grammar hinges on the ability to compare
that grammar against others in a meaningful way. In
keeping with the Minimum Description Length Princi-
ple, smaller grammars are preferred over larger ones,
but only insofar as the smaller grammar does not over-
generalise the language being studied. Furthermore,
measures of size must incorporate the grammar’s abil-
ity to cover sentences of the source language not in-
cluded in the training set.

This paper describes a method for evaluating the
quality of context-free grammars according to i) the
complexity of each grammar and ii) the amount of
disambiguation information necessary for each gram-
mar to reproduce the training set. The sum of the two
evaluations is used as an objective measure of a gram-
mars information content. Three grammars are used
as examples of this process.

Introduction

Grammatical inference, stated in its simplest form,
is the discovery of an acceptable grammar for a lan-
guage based on a finite set of sample strings con-
structed from a finite alphabet. The induction process
requires that the inference device be presented with a
growing corpus of example strings from the grammar
being inferred. At each presentation, the device must
simultaneously make guesses of the underlying rule
being exemplified. By recognizing regularities within
the sample set, the inference mechanism must be able
to form a generalisation of the data that will permit
the prediction of future data. In a keystone paper on
grammatical inference [6], Gold identified three pos-
sible results that can be expected from this approach,
which can be formulated into a rough criterion for

success:

1. The hypothesis will converge to a single descrip-
tion that correctly identifies the grammar—in
which case the inference is correct.

2. The hypothesis will oscillate indefinitely—
which implies that the inference has failed.

3. The hypothesis will converge to an incorrect de-
scription of the grammar—in which case the in-
ference is incorrect.

The important aspect of this formulation is the idea of
convergence. Assuming that the induction is tending
towards a type 1 hypothesis, the inferencing mech-
anism will move ever closer to a correct description
of the grammar—the point in time when the gram-
mar may be considered as identified in the limit. The
notion of convergence implies that at no point in the
inductive process can the device assert that the gram-
mar it has inferred is correct, since further evidence
may prove it incorrect. In practice, the mechanism
can only detect a point in time when its hypothe-
sis has not been changed for a significant number of
consecutive sample strings—a point when it may be
deemed to have reached a sufficiently high probability
of correctness.

Constructing a correct grammar, however, is really
only half the battle. Once a grammar has been hy-
pothesized, the challenge becomes one of assessing
its virtue. That is, given that there exists an infinite
number of grammars that will cover (or generate) the
training sequence, how do we defend any claim that
one is superior to another?

Grammatical formulations

Feldman [5] suggested that attempts to formalize
grammatical inference must include precise formu-

1

