
CDMTCS

Research

Report

Series

Solomono� Induction

Shane Legg

Dept. of Mathematics,

University of Auckland

CDMTCS-030

March 1997

Centre for Discrete Mathematics and

Theoretical Computer Science

Contents

1 Prerequisite Material 4

1.1 Mathematical Notation . 4

1.2 Strings and Codes . 5

1.3 Measure Theory . 7

1.4 Spaces of Sequences and Strings 9

1.5 Kullback Divergence . 11

1.6 Recursive Function Theory . 12

1.7 Algorithmic Information Theory 15

2 Solomono� Induction 17

2.1 The General Process of Inductive Learning 17

2.2 Solomono�'s Induction Method 19

2.3 Solomono�'s Universal Prior 21

2.4 Dominant Enumerable Semi-Measures 23

2.5 Completeness of Solomono� Induction 25

2.6 Properties of Dominant Measures 28

Introduction

Solomono�'s induction method is an interesting theoretical model of what

could be considered a perfect inductive inference system. Furthermore, it can

be proven that a whole range of commonly used induction principles are com-

putable approximations or special cases of Solomono�'s method. As such,

Solomono� induction provides us with a powerful and unifying perspective

on the many diverse principles and methods that exist to deal with induction

problems.

1

The foundations of Solomono� induction are well rooted in the mathe-

matics of computation and information theory. Indeed, due to his early work

on induction, Solomono� is now considered the father of the �eld of algorith-

mic information theory; a �eld which has exposed many deep connections

between topics such as randomness, computability, complexity, chaos and

G�odel incompleteness. It is perhaps surprising then that in many �elds which

deal with induction problems, for example statistics, Solomono�'s work on

induction is almost completely unknown.

It would seem that one of the reasons for this lies in the diverse range

of background material demanded of the reader. For example, readers from

a statistical background, while familiar with Bayes' theorem and measure

theory, are usually unfamiliar with topics such as coding theory, computabil-

ity theory and algorithmic information theory. Similarly readers from other

disciplines are not usually equipped with all the necessary background.

As such, the �rst part of this report is spent briey covering all the neces-

sary background topics. In this way we hope to make the subject available to

as wide an audience as possible. In the second part we present the basic essen-

tials of Solomono�'s inductive inference method. The approach taken is not

that originally used by Solomono� but rather we come from the more general

perspective of dominant enumerable semi-measures with Solomono�'s prior

being a special case.

Because the purpose of this report is simply to serve as an introduction to

Solomono�'s approach to inductive inference and not as an introduction to

general inductive inference theory, it is reasonable to assume that the reader

is already familiar with Bayes' theorem and the problems associated with

selecting prior distributions. In fact one can view Solomono�'s inference

method to be essentially just a general purpose Bayesian inference system

with a special information theoretic universal prior.

Some e�ort has gone into keeping this work as small as possible without

becoming terse. As such, many interesting connections to other topics and

related issues are absent. This has been done to keep the demands on the

reader (and myself!) to a minimum. Most of the proofs I have either exten-

sively reworked myself or are of my own creation. This has further allowed

me to reduce the complexity of the key results and should also add a more

homogeneous feel to the material.

2

Acknowledgements

This work draws extensively and quite liberally from two main sources,

namely Cristian Calude's book \Information and Randomness" [1] and Ming

Li and Paul Vitanyi's book \An Introduction to Kolmogorov Complexity

and its Applications" [3]. The �rst book, while not dealing with inductive

inference did however provide much of the necessary background material in

a very rigorous and concise form. In particular the last two sections of the

�rst chapter follow this book. All of the theorems in the �rst chapter appear

in this book in some form.

The book by Li and Vitanyi provided most of the material on Solomono�

induction itself. While this book is fairly readable and covers an enormous

range of topics related to algorithmic information theory (Kolmogorov com-

plexity) and examines many connections it does contain a large number of

misprints and mathematical errors. A second edition should now be available

which we hope will be much better. Indeed, if these errors can be amended

this book will not doubt become a classic in the �eld.

All of the results in the second chapter appear either in this book or in

their paper [2]. However, except for corollary 2.4.1 and theorems 2.5.1 and

2.6.1, all of the proofs in this chapter and the appendix are either of my own

creation or are signi�cantly reworked versions of proofs from their book.

The main result of this work (theorem 2.5.1) was originally due to Ray

Solomono�. Original proofs of many other results which appear here, such

as the invariance theorem, are also due to Solomono� and appear in some

form in either [4] or [5]. The proof of theorem 2.5.1 which we use is due to

P. G�acs and seems to only appear in [3].

For those interested in a very detailed look at dominant enumerable semi-

measures form slightly di�erent perspective to that given here, we recommend

Zvonkin and Levin's paper [6].

3

Chapter 1

Prerequisite Material

This chapter briey covers the prerequisite material necessary for us to be

able to study Solomono�'s inductive inference method. We start by clarifying

our usage of mathematical notation.

1.1 Mathematical Notation

Let N , Q , Z and R represent the natural, rational, integer and real numbers

respectively. Wherever possible the variable names i, j, k, l, m and n will

be used for integers variables. The symbol � is used to indicate that two

expressions are equal by de�nition. For example, de�ne R+ � fx 2 R :

x � 0g: The minimum of an empty set is de�ned to be 1. The symbols

� and � express the strict subset and subset relations respectively. De�ne

A n B � fa 2 A : a 62 Bg. Let }(X) � fA : A � Xg be the power set of X

and let #X be the cardinality of the set X: So for example, if X = f0; 1; 9g

then #X = 3 and }(X) = f;; f0g; f1g; f9g; f0; 1g; f0; 9g; f1; 9g; f0; 1; 9gg:

A countable subset of the power set of X, written fEng 2 X, is called

pairwise disjoint if for all n 6= m, En \ Em = ;: If it is also the case that

E1 [E2 [� � � = X, then we call the collection of sets fEng a partition of

X. For example, the collect of sets of the form (i; i + 1] where i 2 Z; form a

partition of R:

A partial function , written : X
o
! Y; is a function de�ned on a

set Z � X; where Z is called the domain of and is denoted dom(): If

X = dom() we say that is a total function, or more simply a function, and

we indicate this by writing : X ! Y: For x 62 dom() we put (x) = 1:

4

The set f (x) : x 2 dom()g is called the range of and is denoted range():

Two partial functions ; � : X
o
! Y are said to be equal i� dom() = dom(�)

and for all x 2 dom(), (x) = �(x): For two functions f : Y ! Z and

g : X ! Y de�ne the composition of f and g to be f � g(x) � f(g(x)):

1.2 Strings and Codes

An alphabet is a �nite set with cardinality at least two. We call the elements of

an alphabet symbols. For example the sets fa; b; c; d; : : : ; zg; f0; 1; 2; 3; : : : ; 9g

and fR; 7; xg are all alphabets. Throughout this report we will make use of

an arbitrary alphabet A = fa1; a2; : : : ; aQg: Thus henceforth we will use Q

to represent the number of symbols in our alphabet A:

By An we mean the usual n-fold Cartesian product of sets,

An �
nY
i=1

A:

Thus x 2 An is an ordered n-tuple: x = (x1; x2; : : : ; xn) where each xi 2 A:

Now de�ne

A+ �
1[
n=1

An

and call � � ; the empty string. Further de�ne

A� � f�g [A+

and call x 2 A� a string. Wherever possible the variable names x, y and z

will be used for arbitrary strings.

We denote the binary operation of concatenation over strings by juxtapo-

sition and de�ne the operation as the Cartesian product of the two strings;

that is,

xy � x� y:

Thus if x = (x1; : : : ; xn) 2 A
n and y = (y1; : : : ; ym) 2 A

m then

xy = (x1; : : : ; xn; y1; : : : ; ym) 2 A
n+m:

It can easily be seen that if x; y; z 2 A� then,

xy 2 A�;

5

x(yz) = (xy)z = xyz

and

�x = x� = x:

In other words, A� is closed under concatenation, concatenation is asso-

ciative and � is the identity element. As concatenation is associative and

not commutative we can adopt a more compact notation and simply write

x = x1x2x3 � � �xn for an arbitrary string.

If x 2 An then we de�ne jxj � n and call this the length of the string x.

In particular j�j � 0 and we see that

8x; y 2 A� jxyj = jxj+ jyj:

As x 2 An i� jxj = n, we will often use the notation jxj = n to denote strings

from An as it is more compact in large equations.

Every total ordering on A; say a1 < a2 < a3 < � � � < aQ; induces a

quasi-lexicographical order on A� :

� < a1 < a2 < � � � < aQ < a1a1 < a1a2 < � � �

< a1aQ < a2a0 < � � � < a1a1a1 < � � � < aQaQaQ < � � � :

Let string : N ! A� be the bijective function such that string(n) is the nth

string according to the above quasi-lexicographical order on A�:

De�nition 1.2.1 We say that a string x 2 A� is a pre�x of a string y 2 A�

if

9z 2 A� y = xz

and denote this x �p y: We say that a set S � A� is pre�x free i�

8x; y 2 S x �p y) x = y:

For example, if A = fa; b; c; : : : ; zg then bed �p bedroom and aaza �p

aazaaaza:

De�nition 1.2.2 Let B = fb1; b2; : : :g be a �nite or in�nite set. A code

is an injective function : B ! A�. We call the elements of range()

code-strings. If the set of code strings is pre�x-free we say that is an

instantaneous code.

6

Instantaneous codes are particularly important in practice as the pre�x-

free quality of the code strings allows a decoder to determine any particular

code string without having to read beyond the end of the code string. An-

other useful property is the following elementary inequality:

Theorem 1.2.1 (Kraft Inequality) If n1; n2; : : : 2 N are the lengths of

code-strings of an instantaneous code � : B !A� then

1X
i=1

Q�ni � 1:

By A! we mean the countably in�nite Cartesian product of A; that is,

A! �
1Y
i=1

A:

Alternatively we could have de�ned A! � fx1x2x3 � � � : xi 2 Ag: We call

x 2 A! a sequence and denote it in bold face. Intuitively a sequence is like

a string of in�nite length.

Individual sequences will not be of much use to us in what follows; rather

we will be interested in various sets of sequences. Of particular interest will

be sets of all sequences which have a common string at their beginning, that

is, sets of the form

xA! = fx1 : : : xny1y2y3 : : : : yi 2 Ag;

where x = x1 : : : xn 2 A
�:

1.3 Measure Theory

While probability theory over discrete spaces is very well known, the math-

ematics for continuous spaces is fairly specialised. For this reason we give a

very brief outline of the concepts we will need. There are countless books

on this topic so the interested reader will have no trouble locating further

information.

A probability function, or in this context a probability measure, is a func-

tion which assigns probabilities to various subsets of a sample space
: These

subsets of
 form what is called a �-algebra.

7

De�nition 1.3.1 A collection D � }(
) is called a �-algebra on
 i�

; 2 D;

A 2 D) A 2 D

and

fAng 2 D)
1[
n=1

An 2 D:

IfD is a �-algebra over
 then we call the ordered pair (
;D) ameasurable

space.

Clearly for any set
, both }(
) and ff;g; f
gg are �-algebras. Less

trivial �-algebras are more di�cult to explicitly de�ne. Often when we want

a �-algebra on a space we already have some collection of subsets of the space

and we would like the �-algebra to include these sets. The following theorem

is useful in this situation.

Theorem 1.3.1 If G � }(
) and G 6= ; then there exists a unique �-algebra

�(G) which is the smallest �-algebra such that G � �(G):

Proof Sketch: It can easily be shown that the intersection of any number of

�-algebras is also a �-algebra. Thus we can simply de�ne �(G) to be the

intersection of all �-algebras which are super sets of G: 2

Now that we have the basic concepts of �-algebras and a method to

construct them we now turn our attention to the functions which operate on

these spaces.

De�nition 1.3.2 Let (
;D) be a measurable space. A function � : D ! R+

is a measure if for all mutually disjoint fEng 2 D we have

�

1[
n=1

En

!
=

1X
n=1

�(En):

If � has the additional property that �(
) = 1 then we call � a probability

measure.

If � is a measure over a measurable space (
;D), then we call the tu-

ple (
;D; �) a measure space. If � is also a probability measure on this

measurable space, (
;D; �) is called a probability space.

A similar, but somewhat less intuitive concept is that of a semi-measure.

Semi-measures are not a part of classical measure theory but they are useful

when considering certain computability aspects of measures.

8

De�nition 1.3.3 Let (
;D) be a measurable space. A function � : D ! R+

is a semi-measure if �(
) � 1 and for all mutually disjoint fEng 2 D we

have

�

1[
n=1

En

!
�

1X
n=1

�(En):

Thus we can see that the class of probability measures is a subset of the

class of semi-measures. One can think of a semi-measure which isn't a proba-

bility measure as being some kind of \defective" probability measure. Shortly

we will examine a method for building semi-measures up to be probability

measures.

1.4 Spaces of Sequences and Strings

Now that we have the basic rudiments of measure theory we now consider

how this applies in our context of strings and sequences. We will soon be

interested in predicting digits in a sequence after having seen a �nite number

of initial digits. This means that we need to have probability measures

de�ned over sets of sequences which have common initial digits. Thus we

require a �-algebra which contains the following collection of sets;

P � fxA! : x 2 A�g [f;g:

By theorem 1.3.1 we can simply de�ne S � �(P) to get the required �-algebra

on A!.

While the creation of the measurable space (A!;S) puts us on technically

secure ground when considering the probability of various sets of sequences, it

is still the case that for the purposes of induction we are really only interested

in the probabilities of elements of P. Thus it seems reasonable to save oneself

the di�culties in working with S by restricting our analysis to the more

simplistic space P. Indeed, certain equivalence results exist that allow us to

do this. It is clear from the de�nition of P that P n f;g is isomorphic to A�.

Furthermore, the following result holds;

Theorem 1.4.1 There exists a bijective correspondence between the proba-

bility measures de�ned on S and the functions h : A� ! [0; 1] such that

h(�) = 1;

9

and

8x 2 A� h(x) =
X
jaj=1

h(xa):

A similar result holds for semi-measures. This means that we can investi-

gate probabilities over S by looking at functions over A�: With these results

in mind we can make the following de�nitions for functions over A�.

De�nition 1.4.1 A function � : A� ! [0; 1] is a probability measure if,

�(�) = 1

and

8x 2 A� �(x) =
X
jaj=1

�(xa):

De�nition 1.4.2 A function � : A� ! [0; 1] is a semi-measure if,

�(�) � 1

and

8x 2 A� �(x) �
X
jaj=1

�(xa):

Finally let us examine further the relationship between probability mea-

sures and semi-measures in this new context. We may create a probability

measure � from a semi-measure � by adding an extra symbol `u' to the al-

phabet as follows. Firstly, we want � to be a probability measure, it must

be the case that �(�) = 1 and

8x 2 A� �(x) =
X
jaj=1

�(xa) + �(xu):

We also want � and � to coincide over A+, thus set �(x) � �(x) for all

x 2 A+. It now follows that

8x 2 A� �(xu) = �(x)�
X
jaj=1

�(xa):

The problem is that a semi-measure doesn't tell us what is going on for

strings that have u's which are not just at the end. There simply isn't enough

information in the semi-measure. Hence the extension of the semi-measure

to a probability measure by this method is non-unique. Nevertheless, this

method will be su�cient for our purposes.

10

1.5 Kullback Divergence

Kullback divergence measures how much two measures di�er from each other

and so will be useful to analyse the di�erence in predictive accuracy between

using a universal prior and the true prior.

De�nition 1.5.1 The Kullback divergence of a measure � with respect

to a semi-measure � is de�ned as

D(�jj�) �
X
jaj=1

�(a) ln
�(a)

�(a)
:

We will generalise this further and de�ne,

Dn
i (�jj�) �

X
jxj=i�1

�(x)
X
jyj=n

�(xyjx) ln
�(xyjx)

�(xyjx)
:

Thus we can see that,

Dn
1 (�jj�) = �(�)

X
jyj=n

�(�yj�) ln
�(�yj�)

�(�yj�)

=
X
jyj=n

�(y) ln
�(y)

�(y)
;

and so D1
1(�jj�) � D(�jj�): In a similar fashion we write Dn and Dm for Dn

1

and D1
m respectively.

We will require the following two lemmas. Their proofs are quite straight

forward and appear in appendix A.

Lemma 1.5.1 Let � be a measure and � a semi-measure. It follows that

Dn(�jj�) =
nX
i=1

Di(�jj�):

Lemma 1.5.2 Let � and � be two probability measures over A� where A =

f0; 1g. It follows that for any x 2 A�;

Djxj+1(�jj�) � 2(�(x0)� �(x0))2:

11

1.6 Recursive Function Theory

Informally an algorithm for computing a partial function : N
o
! N is a

�nite set of instructions which, given an input x 2 dom(); yields after a

�nite number t < 1 of steps, the output y = (x): The algorithm must

specify unambiguously how to obtain each step in the computation from the

previous steps and from the input. We call such a partial function a partial

computable function. If also belongs to the set of total functions, then is

called a computable function. These informal notions have as formal models

the partial recursive functions and the recursive functions respectively. We

call any function which is not partial recursive, non-recursive.

Perhaps the real signi�cance of these concepts come from a central result

in the theory known as Turing's Thesis. Informally it tells us that the partial

recursive functions are the ones which we could in theory calculate if given

a su�cient, but still �nite, amount of time, money, people, computers etc.

Non-recursive functions on the other hand can't be calculated even with such

generous resources avaliable and so in a practical sense aren't all that useful.

>From this rather simplistic standpoint, we can see that there is an issue

of real world practicality at stake here; though it is worth noting that in

reality it is only a small subset of even the partial recursive functions which

one could ever hope to calculate as the resources avaliable are always limited.

For example, while a function which requires a trillion billion supercomputers

to calculate is technically speaking still recursive, it certainly isn't very useful

in practice.

This is important to us as it is clear that any inductive inference method

which is not a recursive function would be of no practical use to anybody.

Likewise, any hypothesis learned by an inductive inference method which

wasn't a recursive function wouldn't be of much practical use either.

The above notions of computability can be readily extended to cover

all sorts of functions with domains and ranges other than N ; of particular

interest to us are functions over strings and sets of sequences. There are many

equivalent ways to approach this topic and far more detailed developments

can be found in many texts. For our purposes the following quick overview

will su�ce.

It is at once clear that given an alphabet and an associated total ordering

on its symbols, the functions string and string�1 are both unambiguous and

can be calculated with �nite resources. Intuitively then we can see that both

of these functions are what we would call recursive. It also seems intuitively

12

clear that the composition of any number of partial recursive functions pro-

duces a partial recursive function. Thus the following de�nition should come

as no surprise;

De�nition 1.6.1 A partial function : A� o
! A� is partial recursive if

there exits a partial recursive function f : N
o
! N such that

8x 2 A� (x) = string(f(string�1(x))):

Likewise a function : A� ! A� is recursive if there exists a recursive

function f : N ! N such that the above condition holds.

In a similar fashion other de�nitions can be developed for functions with

multiple arguments and other domains and ranges. The following is a par-

ticularly important type of partial recursive function;

De�nition 1.6.2 We call a partial recursive function : (A�)n � N ! A�

universal if for all partial recursive functions � : (A�)n ! A� there exists

i 2 N such that,

8x 2 (A�)n i(x) = �(x):

The cornerstone of the theory is the existence of such functions:

Theorem 1.6.1 For all n 2 N there exists a universal partial recursive func-

tion : (A�)n � N !A�:

Our comment about the composition of partial recursive functions being

partial recursive can now be formalised in this context:

Theorem 1.6.2 (Uniform Composition Property) For a universal par-

tial recursive function : (A�)n � N ! A� there exists a recursive function

comp : N � N ! N such that

8x 2 (A�)n comp(i;j)(x) = i � j(x):

Pick a universal partial recursive function : A� � N ! A� and call the

enumeration 1; 2; : : : the standard enumeration of partial recursive func-

tions.

As the function < �; � >: A� � A� ! A� is bijective and recursive, we

can apply the uniform composition property to obtain more general bijective

13

recursive functions <> : (A�)n � A� ! A�: For example we could de�ne

<x; y; z> � <x; <y; z>> for all x; y; z 2 A�: Thus the number of variables

of any partial recursive function can be reduced to one and therefore the

standard enumeration 1; 2; : : : and the function < �; � > are all that is

needed for the general theory.

De�nition 1.6.3 A set is recursively enumerable if it is empty or the

range of a total recursive function. A set is recursive if it has a recursive

characteristic function.

Obviously if a set is recursive then it is recursively enumerable.

Now we extend the notion of recursiveness to cover real valued func-

tions and also introduce the weaker properties of enumerability and co-

enumerability of functions.

De�nition 1.6.4 A function f : A� ! R is enumerable if the set f(x; r) 2

A� � Q : r < f(x)g is recursively enumerable. If �f is an enumerable

function then we say that f is co-enumerable. If f is both enumerable and

co-enumerable, we say that f is recursive.

The following lemmas gives us a similar but often more convenient and

perhaps more intuitive expressions for enumerable and recursive real valued

functions.

Lemma 1.6.1 A real function f : A� ! R is enumerable i� there exists a

recursive function g : A� � N ! Q such that for all x 2 A�;

8k 2 N gk(x) � gk+1(x)

and

f(x) = lim
k!1

gk(x):

A similar result holds for co-enumerable functions.

Thus an enumerable function f : A� ! R is one which we can approximate

from below while a co-enumerable function is one which we can approximate

from above. Trivially we see that any recursive function is enumerable.

Lemma 1.6.2 A function f : A� ! R is recursive i� there exits a recursive

function g : A� � N ! Q such that for all x 2 A�;

8k 2 N

���f(x)� gk(x)
��� < 1

k
:

Thus a recursive function f : A� ! R is one which we can approximate to

any speci�ed degree of accuracy.

14

1.7 Algorithmic Information Theory

Fundamental to algorithmic information theory is a particular type of partial

recursive function called a computer.

De�nition 1.7.1 A (pre�x free or Chaitin) computer is a partial recursive

function C : A� � A� o
! A� such that the set fp : d 2 A�; C(p; d) 6= 1g is

pre�x free.

An intuitive interpretation is to consider p to be a program which the

computer C executes and d some data which the program has access to. Of

particular importance is the following type of computer:

De�nition 1.7.2 A computer U is universal if for each computer C there

exists c 2 N depending only on U and C such that whenever C(p; d) 6=1;

9p0 2 A� U(p0; d) = C(p; d)

such that

jp0j � jpj+ c:

Thus a universal computer is one which we can program to simulate

the operation of any other computer. Furthermore, the additional program

length needed to simulate any speci�c computer is of a �xed length and

depends only on the universal computer we are using and the computer we

wish to simulate.

Theorem 1.7.1 There e�ectively exists a universal computer.

Proof Sketch: This result is a direct consequence of the existence of universal

partial recursive functions and the uniform composition property. 2

We are now in a position to be able to de�ne a measure of the information

content of individual strings.

De�nition 1.7.3 Let C be a computer. The (pre�x or Chaitin) complexity

relative to C of a string x 2 A� is de�ned as

HC(x) � minfjpj : p 2 A�; C(p; �) = xg:

15

As we will soon prove, this function takes on particular importance when

the computer C is a universal computer. Firstly we pick a universal computer

U and call it the reference computer.

De�nition 1.7.4 Call the function H(x) � HU(x) the complexity func-

tion and for any string x 2 A� call H(x) the complexity of x.

The real signi�cance of this function comes from the following useful prop-

erty:

Theorem 1.7.2 (Invariance Theorem) For every computer C there ex-

ists a constant c depending only on U and C such that

8x 2 A� H(x) � HC(x) + c:

Proof: From the above de�nitions it immediately follows that for all x 2 A�;

HC(x) = minfjpj : p 2 A�; C(p; �) = xg

� minfjp0j � c : p0 2 A�;U(p0; �) = xg

= H(x)� c:

And so we have the result. 2

Thus we are able to measure the information content of an arbitrary

string with a method which is, at least up to a constant, independent of

the particular reference machine we have chosen. This gives our measure of

information some degree of universality. However this comes at a price as

the follow theorem shows.

Theorem 1.7.3 H(x) is not recursive.

While this result is important, the proof itself is not very enlightening for

our purposes and so has been omitted. The full proof can be easily located

in any book on algorithmic information theory.

The fact that the complexity function is not recursive is unfortunate and

we will deal with some of it's repercussions later on. The weaker condition

of co-enumerability does however hold:

Theorem 1.7.4 H(x) is co-enumerable.

Proof: To prove that H(x) is co-enumerable we must show that the set

f(x; r) 2 A� � Q : H(x) < rg is recursively enumerable. This is easy since

H(x) < r i� there exists y 2 A� and t 2 N such that jyj < n and U(y; �) = x

in at most t steps. 2

16

Chapter 2

Solomono� Induction

In this chapter we examine Solomono�'s all purpose induction method and

prove some impressive results about it's performance. Our approach to the

topic isn't the exact path the Solomono� originally used himself; rather we

come from the more mathematically general perspective of enumerable semi-

measures. We do however try to give the intuitive motivation behind the

topic that Solomono� put forward.

2.1 The General Process of Inductive Learn-

ing

Solomono�'s induction method is an attempt to design a general all purpose

inductive inference system. Ideally such a system would be able to accurately

learn any meaningful hypothesis from a bare minimum of appropriately for-

matted information. Before trying to de�ne such an inference system and

analyse it's behaviour, we �rst need to form a reasonable idea as to what

such a system might look like. To help us do this, let's imagine some sort of

super intelligent device or being that operates as a perfect inductive infer-

ence system. For the sake of our thought exercise we will call this machine

or being Zed.

Our question is: What properties will Zed have? Firstly, Zed mustn't be

too narrow minded as to what could potentially be a correct hypothesis. It

is however clear that any non-computable hypothesis would not be of much

use to anybody. Hence restricting Zed's set of possible hypotheses to only

the computable ones seems reasonable enough. Exactly what this means will

17

become clear when we formalise all these ideas later on.

Next consider what sort of knowledge Zed has about things before pro-

cessing any data. For Zed to be truly all purpose, Zed must be able to

function in situations where no prior information about the system under in-

vestigation is avaliable. For example, in a totally arti�cial inductive inference

problem, even complete knowledge of all the laws of physics would be of no

help. This is not to say that Zed shouldn't be able to utilise prior informa-

tion, but simply that prior information is an extra rather than an essential

part of Zed's operation. Thus if we consider Zed's initial state to be inde-

pendent of the problem at hand, then it follows that this state must be one

of complete ignorance about the nature of the system under investigation.

Now that we have some idea about Zed's initial state and the set of

potential hypotheses that Zed is going to consider, we next look at what

actions Zed will need to be able to perform. Obviously Zed will need to be

able to process information in order to determine which hypotheses are likely

and which are unlikely or even impossible. Perhaps Zed's �rst source of such

information would be the prior information mentioned above, that is; any

knowledge relevant to the system under investigation that comes from work

conducted prior to the current investigation. For example, knowledge of the

laws of physics would often be helpful when studying real physical systems.

It might be the case that others have studied similar systems before. It

could even be the case that the correct hypothesis is already known! Thus,

just as any serious scientist checks what information already exists before

contributing his own ideas and performing his own experiments etc, Zed

must at least have the ability to utilise such information when available.

Having exhausted all information deriving from pervious work, the next

avenue must be for Zed to gather further information himself through ex-

perimentation and observation. This information will further re�ne Zed's

estimate of the true hypothesis.

It is then possible that the experimental information might point to fur-

ther areas of previous work that should be taken into account. Perhaps it

will indicate new sets of experiments that should be carried out. In this way

Zed gathers more and more information, continually updating and re�ning

his degree of belief in the various possible hypotheses. This process is of

course the process by which all scientists operate. Various hypotheses gain

or lose favour in the light of new information or even old information which

has been over looked.

18

2.2 Solomono�'s Induction Method

Now that we have a vague idea of what an ideal all purpose inductive inference

system might look like, let us now try to put some esh on these ideas by

attempting to de�ne an induction system in Zed's image.

Consider the induction process: Increasingly large amounts of information

about experiments, results, known facts etc produce increasingly accurate

estimates of the likelihood of the various hypotheses. Our �rst task is to

formalise the way we represent the information from experiments etc. We

can do this using the ideas on codes and strings from chapter 1. Perhaps an

example is the best explanation.

Imagine that we have a single coin and it is our job to �gure out the

probability of getting heads. Presumably we would go about this by tossing

the coin a large number of times and noting what happened. With an alpha-

bet A = fH; Tg we can simply record these results in the form of a sting,

for example HHHTTHTHTHTTTH. It is not hard to see that all sorts of

measured results could be recorded in a similar fashion.

While this is adequate for our simple coin tossing example, in more com-

plex situations we may also need to include information such as the experi-

mental setup used to obtain speci�c results. For example, imagine that we

have three coins numbered 1, 2 and 3 and it is our job to determine which

coin was biased. This can simply be done by setting A = f1; 2; 3; H; Tg and

then recording which coin was tossed followed by the result. Thus the string

1H3T2H2T would indicate that we tossed coin 1 �rst and obtained a head,

then we tossed coin 3 and obtained a tail and so on.

As we perform more experiments the data string describing our experi-

ments and results grows longer and longer. Because the number of experi-

ments we can perform is in theory unlimited we can think of our observed

data string as being a pre�x of some in�nitely long sequence. The longer

our �nite data string grows the smaller the set of sequences with that pre�x

becomes.

Now consider the hypotheses themselves. They are simply statements

about the way in which a system behaves, or in this case, statements about

various strings which could describe a systems behaviour. Hypotheses which

state that the observed data string so far could not have occurred are obvi-

ously incorrect hypotheses. On the other hand, a hypothesis which considers

the observed data string to be reasonably likely is clearly more likely to be

the correct hypothesis.

19

Thus it is not hard to see that these hypotheses are in fact probability

measures over the space A� or more correctly, the corresponding probability

measures over the measurable space (A!;S): This gives considerable exi-

bility to our hypotheses as it allows us to include both deterministic and

stochastic computable processes.

This is perhaps best explained by example. Consider again the situation

where we have a single possibly biased coin. If the coin was in fact unbiased

the correct hypothesis would be represented by the measure �(x) = 2�jxj

where x is the data string. This would give equal probability to each string

of a given length and thus gives us the correct probability of any observed

data string occurring. Clearly this hypothesis is stochastic.

Now consider another hypothesis. If our coin always lands H on even

throws and T on odd throws, the correct hypotheses would be represented

by the measure

�(x1x2 : : : xn) =

8><
>:

1 if xi = H for all even i

and xi = T for all odd i;

0 otherwise.

Thus only strings which consist of alternate H's and T 's in even and odd

positions respectively have nonzero probability. Obviously then, this hy-

pothesis is completely deterministic. In both of these examples, the function

� is clearly computable | hence the phrase \computable hypothesis".

In more realistic induction problems the measure representing the correct

hypothesis would be considerably more complex as the data strings would

most likely contain prior information and experimental setup details as well.

Also, one would usually be interested in studying more complex phenomenon.

Given any particular hypothesis, we can then use it to predict future

observations by simply conditioning the probability. So in the coin exam-

ple above with x = x1x2 : : : xn being the observed coin tosses so far, the

probability that xn+1 = a according to a hypothesis � would be

�(xajx) =
�(xa \ x)

�(x)
=
�(xa)

�(x)
:

This follows because when viewed as sets, xaA! � xA!: It is worth not-

ing that this is only a prediction based on the assumption that the single

hypothesis � is the correct one.

We now have a exible all purpose way to represent both our data and

hypotheses. What we need next is a method of estimating which hypotheses

20

are likely and which are unlikely or even impossible. Bayes' theorem provides

us with such a method, however it demands that we assign prior probabil-

ities to each hypothesis. This is where the real innovation in Solomono�'s

technique lies and we will examine his solution and it's consequences in the

following section.

Before doing so a quick recap is in order: our perfect induction system

is going to read in an ever increasing string which contains details of various

experiments, their results and other miscellaneous information relevant to

the problem. This information will be used to calculate the probability that

the various computable hypotheses might be the correct one. Bayes' rule

provides us with the mechanism to do this, however it demands that we

assign prior probabilities to each hypothesis.

2.3 Solomono�'s Universal Prior

What we are after is a distribution over the set of all hypotheses which does

not greatly favour any particular set of hypotheses over any other and thus

bias our induction results. Trivially we can see that the set of hypotheses

is in�nite and so simply assigning each hypothesis to have an equal prior

probability is mathematically impossible. Thus necessarily some hypotheses

will have higher prior probabilities than others. Solomono�'s solution was

to devise what could be considered the natural distribution over the set of

computable hypotheses from the perspective of computability theory.

>From the previous section, each hypothesis is represented by an enumer-

able semi-measure. >From the de�nition of an enumerable function we know

that each of these enumerable semi-measures has in turn at least one partial

recursive function or equivalently a computer which can be used to compute

it. Thus any distribution over the set of computers induces a correspond-

ing distribution over the set of all acceptable hypotheses. Fortunately, we

can determine quite a natural prior distribution over the set of computers

with the aid of our universal reference computer U because each computer

is represented by at least one program for U and a good uninformative prior

distribution over the set of all programs can simply be generated by using an

unbiased dice to produce successive digits from our alphabet. These random

digits can then be fed into U as a program specifying which computer to

emulate. As U is a pre�x machine, U will be able to detect the end of the

program automatically and then execute it. So we are in a sense, picking

21

programs or equivalently hypotheses at random. Thus we have derived a

distribution over the set of permissable hypotheses form nothing more than

a simple uniform distribution over A! and basic computability theory.

Let us now formalise these ideas. Let � be some enumerable semi-measure

representing a hypothesis. The universal prior probability of this hypothesis

is de�ned to be

PU(�) �
X

U(p;x)=�(x)

Q�jpj;

where U(p; x) = � means that the program p causes U to calculate the

enumerable semi-measure � on data x: Q is the number of symbols in our

alphabet.

It would appear that our distribution over all permissible hypotheses can

contain no signi�cant information other than that contained in our choice of

universal reference computer U : By the invariance theorem and the so called

\coding theorems" (which have not been presented here) the a�ect of this

choice is restricted. Another tactic is to use universal computers which are

very simple, and thus contain little information. Discussion of these topics

is left for more advanced texts.

In the above de�nition of PU we have summed over all programs p which

describe the semi-measure �: However it is clear that only the shortest pro-

gram for � will have much a�ect on PU(�): So we can approximate PU by

P (�) � Q�H(�);

where H(�) is de�ned to be the length shortest program that computes

�: Various results exist in the literature detailing precise bounds on this

approximation which we will not explore.

Now consider again the problem of predicting the continuation of the data

sequence. The above prior distribution induces a new distribution over A�

when we take all the hypotheses into account; we simply take a sum over all

hypotheses of the prior probability of each hypothesis times the probability

the hypothesis gives to the observed data string. Thus we de�ne,

M(x) �
X

�2MR

Q�H(�)�(x);

where MR is the set of all recursive semi-measures, that is, that the set of

all our computable hypotheses.

22

Thus our best possible prediction of the continuation of a data string x

taking all possible hypotheses into account is now

M(xajx) =
M(xa)

M(x)
:

2.4 Dominant Enumerable Semi-Measures

The semi-measure M is actually an example of what we call a dominant

enumerable semi-measure. This property of being dominant gives M very

powerful properties as a prior distribution. In this section we de�ne and

prove the existence of a general class of dominant enumerable semi-measures

and show that M belongs to this class.

LetM be the class of all enumerable semi-measures over A� and letMR

be the class of all recursive semi-measures. Thus we see that MR �M:

De�nition 2.4.1 A semi-measure � 2 M is dominant over M if for all

� 2 M; there exists c > 0 such that

8x 2 A� �(x) � c�(x):

It is clear from the above de�nition that a measure which is dominant

must have its probability mass spread very thinly over the space and so in

some sense will contain very little information. Thus it appears reasonable

that a dominant semi-measure might be useful as a non-informative universal

prior distribution for inference purposes.

Lemma 2.4.1 The class of enumerable semi-measures (M) is recursively

enumerable.

The proof of the above lemma is several pages long and appears in the

appendix B. The important result for us is the following:

Theorem 2.4.1 There exists dominant semi-measures over M:

Proof: Let �1; �2; : : : be the recursive enumeration of enumerable semi-measures

in lemma 2.4.1 and let � : N ! R+ be any enumerable function such that

1X
n=1

�(n) � 1:

23

Now de�ne � : A� ! R+ as

�(x) �
1X
n=1

�(n)�n(x):

Firstly we will establish that � 2 M; then we will prove that � is in fact

dominant over M: As each �n is a semi-measure it is immediately clear that

�(�) =
1X
n=1

�(n)�n(�) �
1X
n=1

�(n) � 1;

and for all x 2 A�;

�(x) =
1X
n=1

�(n)�n(x)

�
1X
n=1

�(n)

0
@X
jaj=1

�n(xa)

1
A

=
X
jaj=1

1X
n=1

�(n)�n(xa)

=
X
jaj=1

�(xa):

Thus � is a semi-measure on A�:

As each �n is enumerable, by lemma 1.6.1 there exists a recursive function

�kn such that limk!1 �
k
n(x) = �n(x) with �

k
n(x) � �k+1n (x): Likewise we can

de�ne a recursive function �k(n) as �(n) is also an enumerable function. Now

de�ne

�k(x) �
kX

n=1

�k(n)�kn(x):

Immediately we see that �k is increasing in k and limk!1 �
k(x) = �(x): As

�k; �kn and the operation of multiplication and �nite summation are recursive,

by the uniform composition property �k is also recursive. Thus by lemma

1.6.1 again, we see that � is an enumerable function. Hence � 2 M:

Finally if �m 2 M then we see that for all x 2 A�;

�(x) =
1X
n=1

�(n)�n(x)

� �(m)�m(x):

24

Thus � is dominant over M: 2

We have now proven the existence of not just one dominant enumerable

semi-measure but of a whole set of such functions. In particular, we are able

to choose any function � satisfying the given constants. As it turns out,

all dominant measures make very good universal prior distributions. Never-

theless, certain dominant measures make more intuitive sense than others;

indeed Solomono� did not originally approach this from the perspective of

dominant measures, but rather he was looking for a sensible distribution

over the set of all computable hypotheses and in the process he founded

algorithmic information theory.

Theorem 2.4.2 M is a dominant enumerable semi-measure.

Proof: >From theorem 1.7.4 we know that H is co-enumerable and so it

follows that Q�H is enumerable. As � is also enumerable, M must be enu-

merable. Trivially we see that M is also a semi-measure. Because U is a

pre�x free universal computer, the set of programs describing the enumer-

able semi-measures � 2 M must be pre�x free. Thus by Kraft's Inequality

(theorem 1.2.1) we see that P satis�es the conditions on � in theorem 2.4.1

and so M must be a dominate enumerable semi-measure. 2

This gives us the following simple result which we will need in the next

section.

Corollary 2.4.1 For any semi-measure � 2 M;

(lnQ)H(�) � ln
�(x)

M(x)
:

Proof: Because M is dominant, for any enumerable semi-measure � 2 M it

must be the case that M(x) � Q�H(�)�(x): The result then follows. 2

2.5 Completeness of Solomono� Induction

At last we are able to prove an important result which shows that the error

in prediction when using M instead of the true recursive prior � always

diminishes to zero very rapidly irrespective of what the unknown � might

be. To simplify our analysis let us assume that the data sequence with

25

experimental details, results etc has been encoded as a binary sequence, that

is, let A = f0; 1g: Doing so gives an added symmetry to prediction errors

in that it makes the error in probability in predicting the nth digit to be a

0 the same as for predicting a 1. Thus the error in probability in the nth

prediction is in both cases simply represented by

jM(x0jx)� �(x0jx)j;

where � is the true recursive prior distribution.

We are not so interested in the error in prediction for any one data se-

quence but rather we are more interested in the general behaviour which is

expressed by the average or expected error in the nth prediction taken over

the set of all possible data sequences. For our analysis it will be more con-

venient to work with the square error in the nth prediction rather than the

absolute error. Hence we get

Si �
X

jxj=i�1

�(x)(M(x0jx)� �(x0jx))2;

which is the expected squared error in the nth prediction.

Theorem 2.5.1 Let � be a recursive measure and M our dominant enumer-

able semi-measure. It follows that

1X
i=1

Si �
ln 2

2
H(�):

Proof: By the de�nition of Dn and corollary 2.4.1 we see that for all n 2 N ;

Dn(�jjM) =
X
jxj=n

�(x) ln
�(x)

M(x)

� (ln 2)H(�)
X
jxj=n

�(x)

= (ln 2)H(�):

Because this holds for all n 2 N ; it follows from lemma 1.5.1 that,

1X
i=1

Di(�jjM) � (ln 2)H(�):

26

Before preceeding further we need to makeM into a proper probability mea-

sure. We do this by the method outlined in chapter 2. Let Au = A[`u' and

de�ne a probability measure M0 over A�
u by

M0(x0jx) � M(x0jx)

M0(x1jx) � 1�M(x0jx):

Further, extend the probability measure � over A�
u by de�ning �(x) � 0 for

all x 62 A�:

>From the de�nition of Di it now follows that,

1X
i=1

Di(�jjM
0) �

1X
i=1

Di(�jjM) � (ln 2)H(�):

By lemma 1.5.2 we see that,

Di(�jjM
0) =

X
jxj=i�1

�(x)
X
jyj=1

�(xyjx) ln
�(xyjx)

M0(xyjx)

� 2
X

jxj=i�1

�(x)(�(x0jx)�M0(x0jx))2

= 2Si:

Thus we obtain the result;

1X
i=1

Si �
ln 2

2
H(�):

2

Because the harmonic series
P 1

n
does not converge, while

P
Si on the

other hand does converge by the previous theorem, it follows that the se-

quence Si must converge to zero faster than 1
n
: In other words; when using

our universal prior M for prediction, the error in the nth prediction goes

to zero faster than 1
n
irrespective of what the unknown true prior might be!

Thus we have de�ned a very powerful system for prediction and inductive

inference.

It is easy to see that a similar result to 2.4.1 can be proven for other

dominant enumerable semi-measures. This allows us to prove a similar result

to the above theorem for other dominant enumerable semi-measures, hence

the reason for considering Solomono�'s induction method to be a special

case of a general class of powerful inductive inference methods which use

dominant enumerable priors.

27

2.6 Properties of Dominant Measures

Unfortunately there is a catch, and a very serious one for anybody wishing to

use Solomono�'s inductive method in practice. Firstly we need two lemmas.

Lemma 2.6.1 If an enumerable semi-measure is a probability measure then

it is recursive.

Proof: Let � be an enumerable probability measure. If we can prove that �

is also co-enumerable then we will have proven that � is recursive. By lemma

1.6.1 there exists a rational valued recursive function gk(x) increasing in k

such that limk!1 g
k(x) = �(x) for all x 2 A�: De�ne C(x) � Ajxj n x and

hk(x) �
X

y2C(x)

gk(y)� 1:

Clearly hk is a rational valued recursive function and is increasing in k:

Because the set C(x)[x = Ajxj partitions the space A! and � is a probability

measure, it follows that

lim
k!1

hk(x) =
X

y2C(x)

lim
k!1

gk(y)� 1

=
X

y2C(x)

�(y)� 1

= (1� �(x))� 1

= ��(x):

Thus by lemma 1.6.1 we see that�� is enumerable; that is, � is co-enumerable.

As � is both enumerable and co-enumerable it must be recursive. 2

Lemma 2.6.2 The class MR has no dominant semi-measure.

Now we can prove the desired (?!) result:

Theorem 2.6.1 A measure dominant over M cannot be a probability mea-

sure or recursive.

28

Proof: Let � be a semi-measure which is dominant overM: Clearly � cannot

be recursive because this would make � dominant overMR contradicting the

previous lemma. As � is an enumerable semi-measure and not recursive, �

isn't a probability measure by lemma 2.6.1. 2

This result appears to be fatal to any hopes of building a Bayesian in-

ductive inference system which employs a dominant distribution as a prior;

�rstly any such distribution would not be a probability measure and sec-

ondly we wouldn't be able to compute the distribution anyway! Thus it is

clear that any such induction system could not itself be of any direct practi-

cal use. However, inductive inference principles such as Occam's razor, the

maximum likelihood principle and th minimum description length principle

can all be seen as computable approximations to Solomono�'s perfect but

uncomputable inductive inference method. Hence the theoretical interest in

inference methods such as Solomono�'s is well justi�ed, even if it is only

to aid those pursuing more e�ective computable approximations for practi-

cal purposes and for providing a unifying perspective on the many diverse

principles and techniques used in inductive inference.

29

Appendix A

This appendix contains the proofs of the two lemmas on generalised Kullback

divergence. The reader may wish to recall that,

Dn
i (�jj�) �

X
jxj=i�1

�(x)
X
jyj=n

�(xyjx) ln
�(xyjx)

�(xyjx)
:

Lemma 1.5.1 Let � be a measure and � a semi-measure. It follows that

Dn(�jj�) =
nX
i=1

Di(�jj�):

Proof: This result follows from the above de�nitions and a simple application

of Bayes' theorem.

Dn(�jj�) =
X
jxj=n

�(x) ln
�(x)

�(x)

=
X

jxj=n�1

X
jyj=1

�(xy) ln
�(xy)

�(xy)

=
X

jxj=n�1

�(x)
X
jyj=1

�(xyjx) ln
�(xyjx)�(x)

�(xyjx)�(x)

=
X

jxj=n�1

�(x) ln
�(x)

�(x)

X
jyj=1

�(xyjx)

+
X

jxj=n�1

�(x)
X
jyj=1

�(xyjx) ln
�(xyjx)

�(xyjx)

=
X

jxj=n�1

�(x) ln
�(x)

�(x)
+Dn(�jj�)

= Dn�1(�jj�) +Dn(�jj�):

30

And so by induction on n we obtain the result. 2

Lemma 1.5.2 Let � and � be two probability measures over A� where A =

f0; 1g. It follows that for any x 2 A�;

Djxj+1(�jj�) � 2(�(x0)� �(x0))2:

Proof: Let f(�; �) = Djxj+1(�jj�)� 2(p� q)2 where p = �(x0) and q = �(x0):

Thus,

f(�; �) = p ln
p

q
+ ln

1� p

1� q
� p ln

1� p

1� q
� 2(p� q)2:

And so,

@f

@q
= 4(p� q)�

p

q
�

p

1� q
+

1

1� q

= (q � p)
4(q � 1

2
)2

q(1� q)
:

Thus the sign of @f

@q
is just the sign of the factor q � p as q 2 [0; 1] and so q,

(1� q) and (q� 1
2
)2 are all positive. If � � � then f(�; �) = 0; and so for all

p and all q we see that f � 0: That is, Djxj+1(�jj�) � 2(�(x0)� �(x0))2: 2

31

Appendix B

Before we can prove the enumerability ofM we must �rst prove the following:

Lemma The class of enumerable functions of the form A� ! R+ is re-

cursively enumerable.

Proof: By lemma 1.6.1 we see that a function is enumerable if and only if it

has a ration valued recursive function approximating it from below. Thus the

idea of this proof it to construct the desired enumeration of all enumerable

functions by creating an enumeration of all rational approximation functions.

Let 1; 2; : : : be the standard recursive enumeration of all partial re-

cursive functions of the form A� ! A� and de�ne �i : A
� � N ! A� to

be

�i(x; k) � i(<x; string(k)>):

Clearly �1; �2; : : : is a recursive enumeration. As < �; � >, string(�) and

each i is partial recursive, each �i will also be partial recursive by the

uniform composition property. Because < �; �> is bijective, the enumeration

�1; �2; : : : contains all partial recursive functions of this form.

Now de�ne fi : A
� � N ! Q to be

fi(x; j) �
m

n
;

where i(x; j) = < string�1(m); string�1(n) > : By a similar argument to

that used above, we can see that f1; f2; : : : is a recursive enumeration of all

partial recursive functions of this form.

We need each approximation function to be recursive, not just partial re-

cursive. The following algorithm produces the desired sequences of recursive

functions:

32

Step 1: Set s := 0; p := 0 and h0i (x) := �1 for all x 2 A�

Step 2: Do one step in the calculation of fi(x; p):

Let s := s+ 1:

Step 3: If the calculation of fi(x; p) has �nished

let p := p+ 1

let hsi (x) := fi(x; p)

otherwise

let hsi (x) := hs�1i (x):

Step 4: Go to step 2.

Clearly steps 1, 3 and 4 can be done with �nite resources. As step 2 only

carries out one step in the calculation of fi(x; p); this must also be acceptable

| even if the calculation of fi(x; p) is never going to terminate. Thus for each

i this algorithm produces a sequence of rational valued recursive functions

h0i ; h
1
i ; : : : :

We now modify these functions slightly to form rational approximation

functions gki : A
� ! Q : De�ne

gki (x) � max
j�k

h
j
i (x):

By lemma 1.6.1 we see that any enumerable function must have a mono-

tonically increasing rational valued recursive function approximating it from

below, thus the recursive enumeration de�ned by

gi(x) � lim
k!1

gki (x)

must contain all and only enumerable functions. 2

It is worth noting that the operation of taking a limit to in�nity is non-

recursive and so gi isn't necessarily a partial recursive function. Indeed as we

have seen previously, the set of partial recursive functions is a only subset of

the enumerable functions.

Now that we have created a recursive enumeration of all enumerable func-

tions we can now take this one step further and create a recursive enumer-

ation of all enumerable semi-measures. Essentially we do this by specifying

an algorithm which changes the enumeration g1; g2; : : : into a new recursive

33

enumeration of enumerable functions �1; �2; : : : in such a way as to insure

that each �i is a semi-measure.

Lemma 2.4.1 The class of enumerable semi-measures (M) is recursively

enumerable.

Proof: Let g1; g2; : : : be the recursive enumeration of all enumerable functions

and gk1 ; g
k
2 ; : : : the associated rational recursive approximation functions. To

obtain a recursive enumeration of all enumerable semi-measures we apply the

following algorithm to each gi :

Step 1: Set k := 0 and �i(x) := 0 for all x 2 A�

Step 2: Set k := k + 1

Step 3: Compute gki (x) for all x 2 fy 2 A
� : jyj � kg:

Step 4: If either gki (�) > 1 or

9x 2 fy 2 A� : jyj � k � 1g gki (x) <
X
jaj=1

gki (xa);

then stop.

Step 5: Set �i(x) := gki (x) for all x 2 fy 2 A
� : jyj � kg:

Step 6: Go to step 2.

Clearly steps 2 and 6 are unambiguous and require only �nite resources.

A function which is identically zero is trivially recursive and so step 1 is

acceptable. As the function gki is recursive and the set fy 2 A� : jyj � kg

�nite, steps 3 and 5 are also acceptable. Similarly the sum in step 4 is always

�nite. Perhaps the key point to notice about this algorithm is that before

we update the approximation �i we �rst check that the new approximation

will still be a semi-measure. Thus at all times �i is a semi-measure.

Now consider the two possible ways that the algorithm can go: The �rst

possibility is that gi isn't a semi-measure. This will at some stage be picked

34

up in step 4, ending the approximation process. As noted above, �i will be

a semi-measure when we stop. Indeed, it will even be recursive as we can

calculate its value in �nitely many steps.

On the other hand; if the function gi is a semi-measure then we simply

continue to approximate the enumerable semi-measure from below forever.

Thus if gi is a semi-measure, �i = gi: In particular this means that the

new enumeration �1; �2; : : : will contain all enumerable semi-measures as the

enumeration g1; g2; : : : already contains all enumerable functions and thus all

enumerable semi-measures. 2

35

Bibliography

[1] Cristian S. Calude. Information and Randomness: an algorithmic per-

spective. Springer-Verlag, 1994.

[2] Ming Li and Paul M. B. Vitanyi. Inductive Reasoning and Kolmogorov

Complexity. Journal of Computer and System Sciences, 44:343-384, 1992.

[3] Ming Li and Paul M. B. Vitanyi. An Introduction to Kolmogorov Com-

plexity and its Applications. Springer-Verlag, 1993.

[4] Ray J. Solomono�. A formal theory of inductive inference, Part 1 and

Part 2, Inform. and Control 7:1-22 and 224-254, 1964.

[5] Ray J. Solomono�. Complexity-based induction systems: comparisons

and convergence theorems, IEEE Trans. IT-24:422-432, 1978.

[6] A. K. Zvonkin and Leonid A. Levin. The complexity of �nite objects and

the development of the concepts of information and randomness by means

of the theory of algorithms, Russian Math. Survey. 25(6):83-124, 1970.

36

