[DSIA

Incompleteness and
Artificial Intelligence

Shane Legg

IDSIA — Switzerland

shane@idsia.ch

Predictor Complexity vs. Predictor Power

Fundamentally new results on the relationship between complexity, artificial intelligence and
Godel incompleteness are proven.

The first result shows that the ability of an algorithm to learn to predict computable sequences is
limited by the complexity of the prediction algorithm. In other words, only complex predictors can
predict truly difficult sequences, simple but very powerful predictors are impossible. Thus, there
IS no elegant and extremely powerful computable theory of prediction. This is illustrated on the
diagram by the greyed out region of impossible algorithms on the lower right.

The second result is that beyond some point powerful predictors become so complex that it is no
longer possible to prove that any one of these predictors is indeed powerful. In other words, for
any powerful predictor p (this set is not empty) the statement “p is a powerful predictor” is true but
unprovable. This is represented by the upper right region on the diagram. It proves that the most
powerful prediction algorithms cannot be mathematically discovered due to the problem of Godel

Incompleteness.

The primary goal of artificial intelligence research is to discover intelligent algorithms, and funda-
mental to intelligent systems is their ability to make predictions about the future. For example, an
Intelligent system needs to be able to predict whether or not taking some action is likely to lead to
success with respect to a goal. Thus, the problems of high complexity and Godel incompleteness
with predictors carries over into intelligent systems in general: Not only are very powerful artificial
intelligences highly complex, they are also profoundly unknowable.

Technical Definitions

Let B .= {0,1}, let B* be the set of (finite) binary strings, and
let B°° be the set of (infinite) binary sequences. A substring of
z is defined x ;. := xjz;41... 7, where 1 < j <k < n. By [z
we mean the length of the string x. We represent a monotone
universal Turing machine by /.

A sequence w € B°° is a computable sequence if dg € B* :
U(q) = w. We denote this set of sequences C.

A computable predictor is an algorithm p € B* that on a uni-
versal Turing machine I/ computes a total function B* — B.
We write p(z) to mean the function computed by the program
p when executed on U/ along with the input string .

Having x1.,, as input, the objective of a predictor Is for its out-
put, called its prediction, to match the next symbol in the se-
quence, that is, p(z1.,) = Tp11-

We say that a predictor p can learn to predict a sequence
w:=x129... € B ifIdm e N,Vn > m :p(xiy) = Ty

Let P(w) be the set of all predictors able to learn to pre-
dict w. Similarly for sets of all sequences & C B, define

P(S> = ﬂwESP(w)'

The standard measure of complexity for a sequence w IS Its
Kolmogorov complexity defined by
K(w) := mind{|q| : U(q) = w}.
geB*
If no such ¢ exists, we define K(w) := oco. For the Kolmogorov
complexity of a string x € B" we require that U/(q) halts after
generating .

Forn € N, let C, = {w € C : K(w) < n}. Further, let

n = P(C,) be the set of predictors able to learn to predict
all sequences in C,,. The larger n is, the more powerful the
predictors in the set P,, are.

As most results hold within an independent constant we define
f(z) < g(z) to mean that 3¢ € R,Vx : f(z) < g(z) + c.

Complexity of Predictors

Lemmal.Vn € N,3p € P, : K(p) < n+ O(logn).

In words:. Prediction algorithms exist that can learn to predict
all computable sequences up to a given complexity, and these
predictors need not be significantly more complex than the se-
guences they can predict.

Proof idea: Define a prediction algorithm p that knows that / al-
gorithms up to a length of n generate infinite sequences. When
asked to predict the next bit of input string x € B* of length [,
the predictor simulates all programs up to length n waiting for
h of these to output [+ 1 symbols. When this computation has
finished, the predictor simply predicts by using the generated
sequence that is most similar to z.

As [— oo this prediction algorithm must converge to always
making correct predictions whenever the program generating
the string = has length less than or equal to n. This is because
In this case the true sequence to be predicted is in the set of
sequences that the predictor is simulating and thus it will be
eventually identified and used for prediction. Furthermore, we
see that algorithm p contains some fixed length code plus an
encoding of ~ < 2™ which requires n + O(logn) bits to encode.

Theorem 1.Vn € N: p € P, = K(p) = n.

In words: Powerful and very general prediction algorithms are
necessarily complex. Simple but truly powerful prediction al-
gorithms are impossible.

Proof idea: Take a simple prediction algorithm p and convert it
Into a sequence generation algorithm ¢ that always outputs the
opposite to what p would predict at each step.

By construction, p can never learn to predict the sequence
generated by ¢. Furthermore, as ¢ is only a slightly modified
version of p, these two algorithms have about the same Kol-
mogorov complexity. Thus, for every simple predictor there ex-
Ists a simple computable sequence which it can never learn to
predict. As this holds for all computable predictors, the result
Immediately follows.

Weak Al

Complex 5 ? ? 5
Algorithms " Godel Incompleteness
? 5 ?
I
Weak
provable 9,
algorithms - ?
I
Impossible Algorithms
Simple
Algorithms

Upper bound on
performance of
provable algorithms

Powerful Al

Incompleteness of Predictors

Theorem 2. In any consistent formal axiomatic system F that is
sufficiently rich to express statements of the form “p € P,”, there
exists m € N such that for all n > m and for all predictors p € Py
the true statement “p € Py,” cannot be proven in F.

In words. Although there exist prediction algorithms that can
learn to predict all sequences up to any given complexity, it is
Impossible to discover these powerful algorithms using math-
ematical proof due to Godel incompleteness.

Proof idea: The proof has a similar structure to Chaitin’s infor-
mation theoretic proof of Godel incompleteness. We show that
If a simple proof search algorithm could find a proof that some
algorithm was powerful, then this prediction algorithm must
have low Kolmogorov complexity, contradicting Theorem 1.
Therefore, such a proof cannot exist.

Proof. For each n € N let T;, be the set of statements ex-
pressed in the formal system F of the form “p € P,,”, where
p Is filled in with the complete description of some algorithm
In each case. As the set of programs is denumerable, T;, Is
also denumerable and each element of 7;, has finite length.
From Lemma 1 and Theorem 1 it follows that each 7;, contains
Infinitely many statements of the form “p € P,,” which are true.

Fix n and create a search algorithm s that enumerates all
proofs in the formal system F searching for a proof of a state-
ment in the set 7),. As the set T}, Is recursive, s can always
recognise a proof of a statement in 7},. If s finds any such
proof, it outputs the corresponding program p and then halts.

By way of contradiction, assume that s halts, that is, a proof of
atheorem in 7;, Is found and p such that p € P,, Is generated as
output. The size of the algorithm s is a constant (a description
of the formal system F and some proof enumeration code) as
well as an O(logn) term needed to describe n. It follows then
that K (p) < O(log n).

However from Theorem 1 we know that K (p) = n. Thus, for
sufficiently large n, we have a contradiction and so our as-
sumption of the existence of a proof must be false. That is,
for sufficiently large n and for all p € P, the true statement
“p € P,,” cannot be proven within the formal system F.

