Incompleteness and Artificial Intelligence

Shane Legg*

Dalle Molle Institute for Artificial Intelligence
Galleria 2, Manno-Lugano 6928, Switzerland
shane@idsia.ch

1 Introduction

The implications of Godel incompleteness for artificial intelligence have been
studied many times before (e.g. [8]), as has the relation between Kolmogorov
complexity and incompleteness (e.g. [3,2]). In this paper we look at the relation-
ship between these from a new angle. We start by considering the prediction of
computable sequences of bounded complexity, an ability which would be funda-
mental to an artificial intelligence. We then show that although very powerful
algorithms exist which can solve this problem, they are necessarily very com-
plex. From this, we then prove that it is impossible to find any of these powerful
algorithms due to Gédel incompleteness. This places serious limitations on our
ability to understand and analyse intelligent systems using mathematics, and
adds a new perspective on the relation between artificial intelligence, complexity
and Godel incompleteness.

2 Preliminaries

Let B := {0, 1}, let B* be the set of (finite) binary strings, and let B> be the set
of (infinite) binary sequences. A substring of x is defined xj.x = x;x;41... Tk
where 1 < j < k < n. By |z| we mean the length of the string z, for example,
|| = k—j+1. We will sometimes need to encode a natural number as a string.
Using simple encoding techniques it can be shown that there exists a computable
injective function f : N — B* such that Vn € N : |f(n)| < log, n+2log, log, n+1.
We represent a monotone universal Turing machine by U [6].

Definition 1. A sequence w € B* is a computable sequence if 3¢ € B* :
U(q) = w. We denote the set of all computable sequences by C.

Definition 2. A computable predictor is an algorithm p € B* that on a
universal Turing machine U computes a total function B* — B.

We will often write p(z) to mean the function computed by the program p
when executed on U along with the input string , that is, p(z) is short hand for
U(p, x). Having 1., as input, the objective of a predictor is for its output, called

* This work was funded by grant SNF 200020-107616.

its prediction, to match the next symbol in the sequence. Formally we express
this by writing p(x1.,) = Tpt1-

As the algorithmic prediction of incomputable sequences, such as the halting
sequence, is impossible by definition, we only consider the problem of predict-
ing computable sequences. We will assume that the predictor has an unlimited
supply of computation time and storage.

Definition 3. We say that a predictor p can learn to predict a sequence
w:=T1T2... EB® if Im e N,Vn > m : p(21.n) = Tng1-

The existence of m in the above definition need not be constructive, that is,
we might not know when the predictor will stop making prediction errors for
a given sequence, just that this will occur eventually. This is essentially “next
value” prediction as characterised by Barzdin [1], which follows from Gold’s
notion of identifiability in the limit for languages [5].

Let P(w) be the set of all predictors able to learn to predict w. Similarly for
sets of sequences S C B>, define P(S) :=,cs P(w).

The standard measure of complexity for a sequence w is its Kolmogorov
complexity defined by K (w) := mingep-{|q| : U(¢) = w}. If no such ¢ exists, we
define K (w) := co. It can be shown that this measure of complexity depends on
our choice of universal Turing machine U, but only up to an additive constant
that is independent of w. As many of our results have this property, we will define
f(z) & g(x) to mean that 3¢ € R,Vx : f(z) < g(z) + c. In essentially the same
way we can define the Kolmogorov complexity of a string z € B™ by requiring
that U(q) halts after generating x. For an extensive treatment of Kolmogorov
complexity and its applications see [7] or [2].

3 Prediction of computable sequences

It is easily seen that every computable sequence can be predicted by at least one
predictor, and that this predictor need not be significantly more complex than
the sequence to be predicted. Unfortunately however, no universal predictor for
computable sequences exists, indeed for every predictor there exists a computable
sequence which it cannot predict at all:

Lemma 1. For any predictor p there constructively exists a sequence w :=
21T ... € C such that Vn € N: p(z1:) # Zps1 and K(w) < K(p).

Proof. For any computable predictor p there constructively exists a computable
sequence w = x1x2x3 ... computed by an algorithm ¢ defined as follows: Set
x1 =1 —p(N\), then zo = 1 — p(x1), then x3 = 1 — p(x1.2) and so on. Clearly
weCand Vn € N:p(x1.,) =1— 2pt1.

Let p* be the shortest program that computes the same function as p and
define a sequence generation algorithm ¢* based on p* using the procedure above.
By construction, |¢*| = |p*| + ¢ for some constant ¢ that is independent of p*.
Because ¢* generates w, it follows that K(w) < |¢*|. By definition K(p) = |p*|
and so K(w) < K(p). O

As the computable prediction of any computable sequence is impossible, a
weaker goal is to be able to predict all “simple” computable sequences.

Definition 4. For n € N, let C,, := {w € C : K(w) < n}. Further, let P, :=
P(Cyp) be the set of predictors able to learn to predict all sequences in Cy,.

Firstly we note that prediction algorithms exist that can learn to predict
all sequences up to a given complexity, and that these predictors need not be
significantly more complex than the sequences they can predict:

Lemma 2. Vn € N,3p € P, : K(p) < n+ O(logn).

Proof. Let h € N be the number of programs of length n or less which generate
infinite sequences. Build the value of h into a prediction algorithm p constructed
as follows:

In the k' prediction cycle run in parallel all programs of length n or less until
h of these programs have each produced k + 1 symbols of output. Next predict
according to the k + 1" symbol of the generated string whose first k& symbols is
consistent with the observed string. If two generated strings are consistent with
the observed sequence (there cannot be more than two as the strings are binary
and have length k + 1), pick the one which was generated by the program that
occurs first in a lexicographical ordering of the programs. If no generated output
is consistent, give up and output a fixed symbol.

For sufficiently large k, only the h programs which produce infinite sequences
will produce output strings of length k. As this set of sequences is finite, they
can be uniquely identified by finite initial strings. Thus for sufficiently large
k the predictor p will correctly predict any computable sequence w for which
K(w) < n, that is, p € P,.

As there are 2"*t! — 1 strings of length n or less, and h < 2"*! we can
encode h with log, h + 2logylogah +1 = n + 2 + 2logy(n + 1) bits. Thus,
K(p) < n+2+2logy(n+1)+c for some constant ¢ that is independent of n. O

Unfortunately these powerful predictors are necessarily complex:
Theorem 1. Vn e N:p e P, = K(p) > n.

Proof. For any n € N let p € P, that is, Vw € C,, : p € P(w). By Lemma 1 we
know that 3w’ € C:p ¢ P(w') . As p ¢ P(w’) it must be the case that w’ ¢ C,,
that is, K (w') > n. From Lemma 1 we also know that K (p) > K(w') and so the
result follows. O

Thus, even though we have made the generous assumption of unlimited com-
putational resources and data to learn from, only complex algorithms can be
truly powerful predictors. Naturally, highly complex predictors will be difficult
to mathematically analyse. Interestingly, an even stronger result in this direc-
tion can be proven showing that beyond some point the mathematical analysis
is impossible, even in theory:

Theorem 2. In any consistent formal axiomatic system F that is sufficiently
rich to express statements of the form ‘p € P,”, there exists m € N such that
for all n > m and for all predictors p € P, the true statement “p € P,” cannot
be proven in F.

In other words, even though we have proven that very powerful sequence
prediction algorithms exist, beyond a certain complexity it is impossible to find
any of these algorithms using mathematics. The proof has a similar structure
to Chaitin’s information theoretic proof [3] of Gédel incompleteness theorem for
formal axiomatic systems [4].

Proof. For each n € N let T, be the set of statements expressed in the formal
system F of the form “p € P,,”, where p is filled in with the complete description
of some algorithm in each case. As the set of programs is denumerable, T;, is
also denumerable and each element of T, has finite length. From Lemma 2 and
Theorem 1 it follows that each T, contains infinitely many statements of the
form “p € P,,” which are true.

Fix n and create a search algorithm s that enumerates all proofs in the formal
system F searching for a proof of a statement in the set T,,. As the set T, is
recursive, s can always recognise a proof of a statement in 7,,. If s finds any such
proof, it outputs the corresponding program p and then halts.

By way of contradiction, assume that s halts, that is, a proof of a theorem
in T, is found and p such that p € P,, is generated as output. The size of the
algorithm s is a constant (a description of the formal system F and some proof
enumeration code) as well as an O(logn) term needed to describe n. It follows
then that K (p) < O(logn). However from Theorem 1 we know that K(p) > n.
Thus, for sufficiently large n, we have a contradiction and so our assumption of
the existence of a proof must be false. That is, for sufficiently large n and for
all p € P, the true statement “p € P,” cannot be proven within the formal
system F. a

The exact value of m depends on our choice of formal system F and which
reference machine U we use, however for reasonable choices of these the value of
m would be in the order of 1000. That is, the bound m is certainly not so large
as to be vacuous.

These results can be extended to more general settings, specifically to those
problems which are equivalent to, or depend on, sequence prediction. Consider,
for example, a reinforcement learning agent interacting with an environment [9,
6]. In each interaction cycle the agent must choose its actions so as to maximise
the future rewards that it receives from the environment. Of course the agent
cannot know for certain whether or not some action will lead to rewards in the
future, thus it must predict these. Clearly, at the heart of reinforcement learning
lies a prediction problem, and so the results for computable predictors presented
in this paper also apply to computable reinforcement learners. More specifically,
from Theorem 1 it follows that very powerful computable reinforcement learners
are necessarily complex, and from Theorem 2 it follows that it is impossible to
discover extremely powerful reinforcement learning algorithms mathematically.

Complex /T > ? ?

. ?
Algorithms Godel Incompleteness
? 5> 7

?
Weak
provable
algorithms ?

lgorithms

Simple
Algorithms

N
Upper bound on -
Weak AI performance of POWQrfU' AI

provable algorithms

Fig. 1. The results can be depicted as follows. Theorem 1 rules out simple but powerful
artificial intelligence algorithms, as indicated by the greyed out region on the lower
right. Theorem 2 upper bounds how powerful an algorithm can be before it can no
longer be proven to be a powerful algorithm. This is indicated by the vertical line
separating the region of provable algorithms from the region of G6del incompleteness.

References

1. J. M. Barzdin. Prognostication of automata and functions. Information Processing,
71:81-84, 1972.

2. C. S. Calude. Information and Randomness. Springer, Berlin, 2nd edition, 2002.

3. G. J. Chaitin. Godel’s theorem and information. International Journal of Theoretical
Physics, 22:941-954, 1982.

4. K. Gédel. Uber formal unentscheidbare Sitze der principia mathematica und ver-
wandter systeme 1. Monatshefte fiir Matematik und Physik, 38:173-198, 1931. [En-
glish translation by E. Mendelsohn: “On undecidable propositions of formal math-
ematical systems”. In M. Davis, editor, The undecidable, pages 39-71, New York,
1965. Raven Press, Hewlitt].

5. E. Gold. Language identification in the limit. Information and Control, 10(5):447—
474, 1967.

6. M. Hutter. Universal — Artificial — Intelligence: Sequential Decisions
based on Algorithmic Probability. Springer, Berlin, 2004. 300 pages,
http://www.idsia.ch/~marcus/ai/uaibook.htm.

7. M. Li and P. M. B. Vitanyi. An introduction to Kolmogorov complexity and its
applications. Springer, 2nd edition, 1997.

8. R. Penrose. The Emperor’s New Mind. Oxford U. P., 1989.

9. R. Sutton and A. Barto. Reinforcement learning: An introduction. Cambridge, MA,
MIT Press, 1998.

