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1.1

Chapter 1.
Introduction to CUDA

The Graphics Processor Unit as a
Data-Parallel Computing Device

In a matter of just a few years, the programmable graphics processor unit has
evolved into an absolute computing workhorse, as illustrated by Figure 1-1. With
multiple cores driven by very high memory bandwidth, today's GPUs offer
incredible resources for both graphics and non-graphics processing.

GFLOPS

G80GL = Quadro 5600 FX .
G80

300 1 | G80=GeForce 8800 GTX
1 G71 = GeForce 7900 GTX
3 G70 = GeForce 7800 GTX (" 71
1 G70-512
200 A NV40 = GeForce 6800 Ultra G70

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

100

3.0 GHz
oy y3s NV wz Duo
0 E T T ?_ T T T T
Jan Jun Apr May Nov Mar Nov
2003 2004 2005 2006

Figure 1-1. Floating-Point Operations per Second for the
CPU and GPU

The main reason behind such an evolution is that the GPU is specialized for
compute-intensive, highly parallel computation — exactly what graphics rendering is
about — and therefore is designed such that more transistors are devoted to data
processing rather than data caching and flow control, as schematically illustrated by
Figure 1-2.
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Chapter 1. Introduction to CUDA

Control

CPU

Figure 1-2. The GPU Devotes More Transistors to Data
Processing

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations — the same program is executed on many
data elements in parallel — with high arithmetic intensity — the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control; and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets such as arrays can use a data-parallel
programming model to speed up the computations. In 3D rendering large sets of
pixels and vertices are mapped to parallel threads. Similatly, image and media
processing applications such as post-processing of rendered images, video encoding
and decoding, image scaling, stereo vision, and pattern recognition can map image
blocks and pixels to parallel processing threads. In fact, many algorithms outside the
tield of image rendering and processing are accelerated by data-parallel processing,
from general signal processing or physics simulation to computational finance or
computational biology.

Up until now, however, accessing all that computational power packed into the
GPU and efficiently leveraging it for non-graphics applications remained tricky:

U The GPU could only be programmed through a graphics API, imposing a high
learning cutve to the novice and the overhead of an inadequate API to the non-
graphics application.

0 The GPU DRAM could be read in a general way — GPU programs can gather
data elements from any part of DRAM — but could not be written in a general
way — GPU programs cannot scatfer information to any part of DRAM —,
removing a lot of the programming flexibility readily available on the CPU.

U Some applications were bottlenecked by the DRAM memory bandwidth, under-
utilizing the GPU’s computational power.

This document describes a novel hardware and programming model that is a direct
answer to these problems and exposes the GPU as a truly generic data-parallel
computing device.

2 CUDA Programming Guide Version 0.8.2



Chapter 1. Introduction to CUDA

1.2 CUDA: A New Architecture for Computing on
the GPU

CUDA stands for Compute Unified Device Architecture and is a new hardware
and software architecture for issuing and managing computations on the GPU as a
data-parallel computing device without the need of mapping them to a graphics
APL. Tt is available for the GeForce 8800 Series, Quadro FX 5600/4600, and
beyond. The operating system’s multitasking mechanism is responsible for
managing the access to the GPU by several CUDA and graphics applications

running concurrently.

The CUDA software stack is composed of several layers as illustrated in Figure 1-3:
a hardware driver, an application programming interface (API) and its runtime, and
two higher-level mathematical libraries of common usage, CUFFT and CUBLAS
that are both described in separate documents. The hardwate has been designed to
support lightweight driver and runtime layers, resulting in high performance.

CPU
Application
\4
CUDA Libraries
¥ 4
CUDA Runtime
¥ ¥
CUDA Driver
GPU

Figure 1-3. Compute Unified Device Architecture Software
Stack

The CUDA API comprises an extension to the C programming language for a
minimum learning curve (see Chapter 4).

CUDA Programming Guide Version 0.8.2 3



Chapter 1. Introduction to CUDA

CUDA provides general DRAM memory addressing as illustrated in Figure 1-4 for
more programming flexibility: both scatter and gather memory operations. From a
programming perspective, this translates into the ability to read and write data at any
location in DRAM, just like on a CPU.

Control ALU | ALu | ALu Control ALU | ALU | ALU

Control
Cache.

Gather

Control ALU | ALu | ALu Control ALU | ALU | ALU

control control
cache. cache.

o alofo] [o]efala

Scatter

Figure 1-4. The Gather and Scatter Memory Operations

S
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Chapter 1. Introduction to CUDA

CUDA features a parallel data cache or on-chip shared memory with very fast
general read and write access, that threads use to share data with each other (see
Chapter 3). As illustrated in Figure 1-5, applications can take advantage of it by
minimizing overfetch and round-trips to DRAM and therefore becoming less
dependent on DRAM memory bandwidth.

Control

Without shared memory

Control

Control
Cache.

ALU || ALU | ALU ALU | ALU | ALU

Control
Cache.

With shared memory

Figure 1-5. Shared Memory Brings Data Closer to the ALUs

e
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Chapter 1. Introduction to CUDA

1.3

Document’s Structure

This document is organized into the following chapters:

a

U000

(I

O

Chapter 1 contains a general introduction to CUDA.
Chapter 2 outlines the programming model.

Chapter 3 describes its hardware implementation.
Chapter 4 describes the CUDA API and runtime.

Chapter 5 gives the technical specifications of the GeForce 8800 Series and
Quadro FX 5600/4600.

Chapter 6 gives some guidance on how to achieve maximum performance.

Chapter 7 illustrates the previous chapters by walking through the code of some
simple example.

Appendix A lists the mathematics functions supported in CUDA.
Appendix B is the CUDA runtime API reference.
Appendix C is the CUDA driver API reference.

CUDA Programming Guide Version 0.8.2



2.1

2.2

2.2.1

Chapter 2.
Programming Model

A Highly Multithreaded Coprocessor

When programmed through CUDA, the GPU is viewed as a compute device capable of
executing a very high number of threads in parallel. It operates as a coprocessor to
the main CPU, or Jost: In other words, data-parallel, compute-intensive portions of
applications running on the host are off-loaded onto the device.

More precisely, a portion of an application that is executed many times, but
independently on different data, can be isolated into a function that is executed on
the device as many different threads. To that effect, such a function is compiled to
the instruction set of the device and the resulting program, called a &ernel, is
downloaded to the device.

Both the host and the device maintain their own DRAM, referred to as host memory
and device memory, respectively. One can copy data from one DRAM to the other
through optimized API calls that utilize the device’s high-performance Direct
Memory Access (DMA) engines.

Thread Batching

The batch of threads that executes a kernel is organized as a grid of thread blocks as
described in Sections 2.2.1 and 2.2.2 and illustrated in Figure 2-1.

Thread Block

A thread block is a batch of threads that can cooperate together by efficiently
sharing data through some fast shared memory and synchronizing their execution to
coordinate memory accesses. More precisely, one can specify synchronization points
in the kernel, where threads in a block are suspended until they all reach the
synchronization point.

Each thread is identified by its #hread 1D, which is the thread number within the
block. To help with complex addressing based on the thread ID, an application can
also specify a block as a two- or three-dimensional array of arbitrary size and
identify each thread using a 2- or 3-component index instead. For a two-

CUDA Programming Guide Version 0.8.2 7
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2.2.2

dimensional block of size (D., D)), the thread ID of a thread of index (x, y) is
(x +y D.J) and for a three-dimensional block of size (D, D,, D,), the thread ID of a
thread of index (x, y, g) is (x + y D« + 3 D D).

Grid of Thread Blocks

There is a limited maximum number of threads that a block can contain. However,
blocks of same dimensionality and size that execute the same kernel can be batched
together into a grid of blocks, so that the total number of threads that can be
launched in a single kernel invocation is much larger. This comes at the expense of
reduced thread cooperation, because threads in different thread blocks from the
same grid cannot communicate and synchronize with each other. This model allows
kernels to efficiently run without recompilation on various devices with different
parallel capabilities: A device may run all the blocks of a grid sequentially if it has
very few parallel capabilities, or in parallel if it has a lot of parallel capabilities, or
usually a combination of both.

Each block is identified by its block ID, which is the block number within the grid.
To help with complex addressing based on the block ID, an application can also
specify a grid as a two-dimensional array of arbitrary size and identify each block

using a 2-component index instead. For a two-dimensional block of size (D, D,),
the block ID of a block of index (x; y)is (x + y D).

CUDA Programming Guide Version 0.8.2



Chapter 2. Programming Model

The host issues a succession of kernel invocations to the device. Each kernel is executed as a batch
of threads organized as a grid of thread blocks

Figure 2-1. Thread Batching

CUDA Programming Guide Version 0.8.2 9



Chapter 2. Programming Model

2.3 Memory Model

A thread that executes on the device has only access to the device’s DRAM and
on-chip memory through the following memory spaces, as illustrated in Figure 2-2:
Read-write per-thread registers,

Read-write per-thread local memory,

Read-write per-block shared memory,

Read-write per-grid global memory,

Read-only per-grid constant memory,

UO0000D0

Read-only per-grid fexture memory.

The global, constant, and texture memory spaces can be read from or written to by
the host and are persistent across kernel calls by the same application.

The global, constant, and texture memory spaces are optimized for different
memory usages (see Sections 6.1.2.1, 6.1.2.2, and 6.1.2.3). Texture memory also
offers different addressing modes, as well as data filtering, for some specific data
formats (see Section 4.3.4).

10 CUDA Programming Guide Version 0.8.2



Chapter 2. Programming Model

A thread has access to the device’s DRAM and on-chip memory through a set of
memory spaces of various scopes.

Figure 2-2. Memory Model

CUDA Programming Guide Version 0.8.2 11






3.1

Chapter 3.
Hardware Implementation

A Set of SIMD Multiprocessors with On-Chip
Shared Memory

The device is implemented as a set of multiprocessors as illustrated in Figure 3-1. Each
multiprocessor has a Single Instruction, Multiple Data architecture (SIMD): At any
given clock cycle, each processor of the multiprocessor executes the same
instruction, but operates on different data.

Each multiprocessor has on-chip memory of the four following types:

O One set of local 32-bit registers per processor,
O A parallel data cache ot shared memory that is shared by all the processors and
implements the shared memory space,

QO A read-only constant cache that is shared by all the processors and speeds up reads
from the constant memory space, which is implemented as a read-only region of
device memory,

O A read-only fexture cache that is shared by all the processors and speeds up reads
from the texture memory space, which is implemented as a read-only region of
device memory.

The local and global memory spaces are implemented as read-write regions of
device memory and are not cached.

Each multiprocessor accesses the texture cache via a fexzure unit that implements the
various addressing modes and data filtering mentioned in Section 2.3.

CUDA Programming Guide Version 0.8.2 13



Chapter 3. Hardware Implementation

A set of SIMD multiprocessors with on-chip shared memory.

Figure 3-1. Hardware Model

3.2 Execution Model

A grid of thread blocks is executed on the device by executing one or more blocks
on each multiprocessor using time slicing: Each block is split into SIMD groups of
threads called warps; each of these warps contains the same number of threads,

called the warp sige, and is executed by the multiprocessor in a SIMD fashion; a thread
scheduler periodically switches from one warp to another to maximize the use of the
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Chapter 3: Hardware Implementation

multiprocessot’s computational resources. A balf-warp is either the first or second
half of a warp.

The way a block is split into warps is always the same; each warp contains threads of
consecutive, increasing thread IDs with the first warp containing thread 0.
Section 2.2.1 describes how thread IDs relate to thread indices in the block.

A block is processed by only one multiprocessor, so that the shared memory space
resides in the on-chip shared memory leading to very fast memory accesses. The
multiprocessot’s registers are allocated among the threads of the block. If the
number of registers used per thread multiplied by the number of threads in the
block is greater than the total number of registers per multiprocessor, the block
cannot be executed and the corresponding kernel will fail to launch.

Several blocks can be processed by the same multiprocessor concurrently by
allocating the multiprocessot’s registers and shared memory among the blocks.

The issue order of the warps within a block is undefined, but their execution can be
synchronized, as mentioned in Section 2.2.1, to coordinate global or shated memory
accesses. If the instruction executed by a warp writes to the same location in global
or shared memory for more than one of the threads of the warp, how many writes
occur to that location and the order in which they occur is undefined, but one of the
writes is guaranteed to succeed.

The issue order of the blocks within a grid of thread blocks is undefined and there is
no synchronization mechanism between blocks, so threads from two different
blocks of the same grid cannot safely communicate with each other through global
memory during the execution of the grid.
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An Extension to the C Programming
Language

The goal of the CUDA programming interface is to provide a relatively simple path
for users familiar with the C programming language to easily write programs for
execution by the device.

It consists of:

0O A minimal set of extensions to the C language, described in Section 4.2, that
allow the programmer to target portions of the source code for execution on the
device;

O A runtime library split into:

» A host component, described in Section 4.5, that runs on the host and
provides functions to control and access one or more compute devices
from the host;

» A device component, described in Section 4.4, that runs on the device and
provides device-specific functions;

» A common component, described in Section 4.3, that provides built-in
vector types and a subset of the C standard library that are supported in
both host and device code.

It should be emphasized that the only functions from the C standard library that are
supported to run on the device are the functions provided by the common runtime
component.

Language Extensions

The extensions to the C programming language are four-fold:

0O Function type qualifiers to specify whether a function executes on the host or on
the device and whether it is callable from the host or from the device
(Section 4.2.1);

0O Variable type qualifiers to specify the memory location on the device of a
variable (Section 4.2.2);
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A new directive to specify how a kernel is executed on the device from the host
(Section 4.2.3);

Four built-in variables that specify the grid and block dimensions and the block
and thread indices (Section 4.2.4).

These extensions come with some restrictions described in each of the sections
below. nvee will give an error or a warning on some violations of these restrictions,
but some of them cannot be detected.

Each source file containing CUDA language extensions must be compiled with the
CUDA compiler nvcc, as briefly described in Section 4.2.5. A detailed desctiption
of nvcc can be found in a separate document.

Function Type Qualifiers

__device_
The __device__ qualifier declares a function that is:

Executed on the device

Callable from the device only.

__global__
The __global___ qualifier declares a function as being a kernel. Such a function is:

Executed on the device,

Callable from the host only.
__host___

The __host___ qualifier declares a function that is:

Executed on the host,
Callable from the host only.

It is equivalent to declare a function with only the __host___ qualifier or to declare
it without any of the __host__,_ device__,or _ global__ qualifier; in either
case the function is compiled for the host only.

However, the __host___ qualifier can also be used in combination with the
__device___ qualifier, in which case the function is compiled for both the host and
the device.

Restrictions
__device__ functions are always inlined.
__device__and __global__ functions do not support recursion.

__device__and __global___ functions cannot declare static variables inside
their body.

__device___and __global __ functions cannot have a variable number of
arguments.

__device__ functions cannot have their address taken; function pointers to
__global__ functions, on the other hand, are supported.
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The __global___and __host__ qualifiers cannot be used together.
__global__ functions must have void return type.

Any call toa __global__ function must specity its execution configuration as
described in Section 4.2.3.

A calltoa__global__ function is synchronous, meaning it blocks until
completion.

__global__ function parameters are currently passed via shared memory to the
device and limited to 256 bytes.

Variable Type Qualifiers

__device_
The __device__ qualifier declares a variable that resides on the device.
At most one of the other type qualifiers defined in the next three sections may be
used together with ___device__ to further specify which memory space the
variable belongs to. If none of them is present, the variable:

Resides in global memory space,

Has the lifetime of an application,

Is accessible from all the threads within the grid and from the host through the
runtime library.

___constant
The __constant___ qualifier, optionally used together with __device__,

declares a variable that:
Resides in constant memory space,
Has the lifetime of an application,

Is accessible from all the threads within the grid and from the host through the
runtime library.

__shared__
The __shared___ qualifier, optionally used together with __device__, declares a

variable that:

Resides in the shared memory space of a thread block,

Has the lifetime of the block,

Is only accessible from all the threads within the block.
When declaring a variable in shared memory as an external array such as
extern __shared__ float shared[];

the size of the array is determined at launch time (see Section 4.2.3). All variables
declared in this fashion, start at the same address in memoty, so that the layout of
the vatiables in the array must be explicitly managed through offsets. For example, if
one wants the equivalent of

short array0[128];
float arrayl[64];

CUDA Programming Guide Version 0.8.2 19



Chapter 4. Application Programming Interface

4.2.2.4

4.2.3

20

int array2[256];

in dynamically allocated shared memory, one could declare and initialize the arrays
the following way:

extern ___shared__ char array[];

__device__ void func(Q) // __device__ or __global__ function
{

short* array0 = (short*)array;

float* arrayl = (float*)&array0[128];

int* array2 = (int*)&arrayl[64];

}
Restrictions

These qualifiers are not allowed on struct and union members, on formal
parameters and on local variables within a function that executes on the host.

__shared___and ___constant__ cannot be used in combination with each other.
_ shared__and __constant__ variables have implied static storage.

__constant__ variables cannot be assigned to from the device, only from the
host. They are therefore only allowed at file scope.

__shared___ variables cannot have an initialization as part of their declaration.

An automatic variable declared in device code without any of these qualifiers
generally resides in a register. However in some cases the compiler might choose to
place it in local memory. This is often the case for large structures or arrays that
would consume too much register space, and arrays for which the compiler cannot
determine that they are indexed with constant quantities. Inspection of the prx
assembly code (obtained by compiling with the -ptx or —~keep option) will tell if a
variable has been placed in local memory during the first compilation phases as it
will be declared using the . local mnemonic and accessed using the Id. local
and st. local mnemonics. If it has not, subsequent compilation phases might still
decide otherwise though if they find it consumes too much register space for the
targeted architecture.

Pointers in code that is executed on the device are supported as long as the compiler
is able to resolve whether they point to either the shared memory space or the
global memory space, otherwise they are restricted to only point to memory
allocated or declared in the global memory space.

Dereferencing a pointer either to global or shared memory in code that is executed
on the host or to host memory in code that is executed on the device results in an
undefined behavior, most often in a segmentation fault and application termination.

Execution Configuration

Any call to a __global___ function must specify the execution confignration for that
call.

The execution configuration defines the dimension of the grid and blocks that will
be used to execute the function on the device. It is specified by inserting an
expression of the form <<< Dg, Db, Ns >>> between the function name and
the parenthesized argument list, where:
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Dg is of type dim3 (see Section 4.3.1.2) and specifies the dimension and size of
the grid, such that Dg.x * Dg.y equals the number of blocks being launched;

Db is of type dim3 (see Section 4.3.1.2) and specifies the dimension and size of
each block, such that Db.x * Db.y * Db.z equals the number of threads per
block;

Ns is of type size_t and specifies the number of bytes in shared memory that
is dynamically allocated per block for this call in addition to the statically
allocated memory; this dynamically allocated memory is used by any of the
variables declared as an external array as mentioned in Section 4.2.2.3; NS is an
optional argument which defaults to 0.

The arguments to the execution configuration are evaluated before the actual
function arguments.

As an example, a function declared as

__global__ void Func(float* parameter);
must be called like this:

Func<<< Dg, Db, Ns >>>(parameter);

Built-in Variables
gridDim

This variable is of type dim3 (see Section 4.3.1.2) and contains the dimensions of
the grid.

blockldx
This variable is of type uINt3 (see Section 4.3.1.1) and contains the block index
within the grid.
blockDim

This variable is of type dim3 (see Section 4.3.1.2) and contains the dimensions of
the block.

threadldx
This variable is of type UINt3 (see Section 4.3.1.1) and contains the thread index
within the block.

Restrictions
It is not allowed to take the address of any of the built-in variables.

It is not allowed to assign values to any of the built-in variables.

Compilation with NVCC

nvcc is a compiler driver that simplifies the process of compiling CUDA code: It
provides simple and familiar command line options and executes them by invoking
the collection of tools that implement the different compilation stages.

nvce’s basic workflow consists in separating device code from host code and
compiling the device code into a binary form or cubin object. The generated host
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code is output either as C code that is left to be compiled using another tool or as
object code directly by invoking the host compiler during the last compilation stage.

Applications can either ignore the generated host code and load the cu#bin object
onto the device and launch the device code using the CUDA driver API (see
Section 4.5.3), or link to the generated host code, which includes the c#bin object as
a global initialized data array and contains a translation of the execution
configuration syntax described in Section 4.2.3 into the necessary CUDA runtime
startup code to load and launch each compiled kernel (see Section 4.5.2).

A detailed description of NVCC can be found in a separate document.

Common Runtime Component

The common runtime component can be used by both host and device functions.

Built-in Vector Types

charl, ucharl, char2, uchar2, char3, uchar3,
char4, uchar4, shortl, ushortl, short2, ushort2,
short3, ushort3, short4, ushort4, intl, uintl,
Int2, uint2, Int3, uint3, Int4, uint4, longl,
ulongl, long2, ulong2, long3, ulong3, long4,
ulong4, floatl, float2, float3, float4

These are vector types derived from the basic integer and floating-point types. They
are structures and the 1, 20d, 314 and 4% components are accessible through the
tields X, Y, Z, and W, respectively. They all come with a constructor function of the
form make_<type name>; for example,

int2 make_int2(int x, int y);

which creates a vector of type 1nt2 with value (X, y).

dim3 Type

This type is an integer vector type based on uint3 that is used to specify
dimensions. When defining a variable of type dim3, any component left unspecified
is initialized to 1.

Mathematical Functions

Table A-1 in Appendix A contains a comprehensive list of the C/C++ standard
library mathematical functions that are currently supported, along with their
respective error bounds when executed on the device.

When executed in host code, a given function uses the C runtime implementation if
available.
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Time Function
clock_t clockQ);

returns the value of a counter that is incremented every clock cycle.

Sampling this counter at the beginning and at the end of a kernel, taking the
difference of the two samples, and recording the result per thread provides a
measure for each thread of the number of clock cycles taken by the device to
completely execute the thread, but not of the number of clock cycles the device
actually spent executing thread instructions. The former number is greater that the
latter since threads are time sliced.

Texture Type

Texture memory is exclusively accessed through zexzure references. A texture reference
is bound to some region of memory, called zexture, and defines a specific access
mode for this texture. In patticular, a texture reference has a dimensionality that
specifies whether the texture it is bound to is addressed either as a one-dimensional
array using one texture coordinate, or as a two-dimensional array using two texture
coordinates. Elements of the array are called fexels and the process of reading data
from a texture via a texture reference using some input texture coordinates is called
texture fetching.

A texture reference is declared at file scope as a variable of type texture:
texture<Type, Dim, ReadMode> texRef;

where:

Type specifies the type of data that is returned when fetching the texture; Type
is restricted to the basic integer and floating-point types and any of the vector
types defined in Section 4.3.1.1;

Dim specifies the dimensionality of the texture reference and is equal to 1 or 2;
Dim is an optional argument which defaults to 1;

ReadMode is equal to cudaReadModeNormal izedFloat or
cudaReadModeElementType; if it is cudaReadModeNormal izedFloat
and Type is a 16-bit or 8-bit integer type, the value is actually returned as
floating-point type and the full range of the integer type is mapped to [0, 1];
for example, an unsigned 8-bit texture element with the value Oxff reads as 1; if it
is cudaReadModeElementType, no conversion is performed; ReadMode is
an optional argument which defaults to cudaReadModeElementType.

The texture type is a structure with the following fields:

channelDesc which describes the format of the value that is returned when
fetching the texture; channelDesc is of the following type:
struct cudaChannelFormatDesc {

int x, y, z, w;

enum cudaChannelFormatKind f;
};
where X, y, z, and w are equal to the number of bits of each component of the
returned value and F is:

cudaChannelFormatKindSigned if these components are of signed
integer type,

CUDA Programming Guide Version 0.8.2 23



Chapter 4. Application Programming Interface

4.4

4.4.1

24

cudaChannelFormatKindUnsigned if they are of unsigned integer

type,

cudaChannelFormatKindFloat if they are of floating point type;
normal ized which specifies whether texture coordinates are normalized or
not; if it is non-zero, all elements in the texture are addressed with texture
coordinates in the range [0, 1] rather than in the range [0, width-1] or
[0, height-1], where width and height are the texture sizes;

addressMode which specifies the addressing mode, that is how out-of-range
texture coordinates are handled; addressMode is an array of size two whose
first and second elements specify the addressing mode for the first and second
texture coordinates, respectively; the addressing mode is equal to either
cudaAddressModeClamp, in which case out-of-range texture coordinates are
clamped to the valid range, or cudaAddressModeWrap, in which case out-of-
range texture coordinates are wrapped to the valid range;
cudaAddressModeWrap is only supported for normalized texture coordinates;

TilterMode which specifies the filtering mode, that is how the value returned
when fetching the texture is computed based on the input texture coordinates;
filterMode is equal to cudaFi lterModePoint or
cudaFilterModeLinear; if it is cudaFi I terModePoint, the returned
value is the texel whose texture coordinates are the closest to the input texture
coordinates; if it is cudaF i IterModeL inear, the returned value is the linear
interpolation of the two (for a one-dimensional texture) or four (for a
two-dimensional texture) texels whose texture coordinates are the closest to the
input texture coordinates; cudaFi lterModeLinear is only valid for returned

values of floating-point type.
All these fields, but channe lDesc, may be directly modified in host code.

A texture can be any region of linear memory or a CUDA array (see Section 4.5.1.2).

Textures allocated in linear memory can only be of dimensionality equal to 1 and
addressed using a non-normalized integer texture coordinate; they do not support
the linear filtering mode and the various addressing modes: Out-of-range texture
accesses return zero.

A texture is bound to a texture reference through host runtime functions (see
Sections 4.5.2.4 and 4.5.3.7). Several distinct texture references might be bound to

the same texture or to textures that overlap in memory. A texture reference needs to
be bound to some textutre before it can be used by a kernel to read from the texture

using the functions described in Section 4.4.4. Note that reading from some texture
in linear memory while writing to it in the same kernel execution produces
undefined results.

Device Runtime Component

The device runtime component can only be used in device functions.

Mathematical Functions

For some of the functions of Table A-1, a less accurate, but faster version exists in
the device runtime component; it has the same name prefixed with ___ (such as
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__sin(x)). These functions are listed in Table A-2, along with their respective
error bounds.

The compiler has an option (-use_fFast_math) to force every function to compile
to its less accurate counterpart if it exists.

Synchronization Function

void __ syncthreads();

synchronizes all threads in a block. Once all threads have reached this point,
execution resumes normally.

__syncthreads() is used to coordinate communication between the threads of a
same block. When some threads within a block access the same addresses in shared
or global memory, there are potential read-after-write, write-after-read, or write-
after-write hazards for some of these memory accesses. These data hazards can be
avoided by synchronizing threads in-between these accesses.

__syncthreads() is allowed in conditional code but only if the conditional
evaluates identically across the entire thread block, otherwise the code execution is
likely to hang or produce unintended side effects.

Type Casting Functions

float __int_as_float(int);

performs a floating-point type cast on the integer argument, leaving the value
unchanged. For example, __int_as_fl1oat(0xC0000000) is equal to -2.
int _ float_as_int(float);

performs an integer type cast on the floating-point argument, leaving the value
unchanged. For example, _ float_as_int(1.0f) is equal to 0x3F800000.

Texture Functions

template<class Type>

Type
texfetch(texture<Type, 1, ReadMode> texRef, float x);

template<class Type>

Type

texfetch(texture<Type, 2, ReadMode> texRef, float x, float y);
fetches the CUDA array bound to texture reference texReTF using texture
coordinates X and Y.

template<class Type>

Type

texfetch(texture<Type, 1, ReadMode> texRef, int x)

fetches the linear memory bound to texture reference texReT using texture
coordinate X.
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Host Runtime Component

The host runtime component can only be used by host functions.
It provides functions to handle:

0 Device management,
Context management,
Memory management,
Code module management,
Execution control,

Texture reference management,

OO0O0000

Interoperability with OpenGL and Direct3D.
It is composed of two APlIs:

0O A low-level API called the CUD.A driver API,

O A higher-level API called the CUDA runtime API that is implemented on top of
the CUDA driver APL

These APIs are mutually exclusive: An application should use either one or the
other.

The CUDA runtime eases device code management by providing implicit
initialization, context management, and module management. The C host code
generated by nvcce is based on the CUDA runtime (see Section 4.2.5), so
applications that link to this code must use the CUDA runtime API.

In contrast, the CUDA driver API requires more code, is harder to program and
debug, but offers a better level of control and is language-independent since it only
deals with ¢u#bin objects (see Section 4.2.5). In particular, it is more difficult to
configure and launch kernels using the CUDA driver API, since the execution
configuration and kernel parameters must be specified with explicit function calls
instead of the execution configuration syntax described in Section 4.2.3. Also, device
emulation (see Section 4.5.2.5) does not work with the CUDA driver APL.

The CUDA driver API is delivered through the cuda dynamic library and all its
entry points are prefixed with cu.

The CUDA runtime API is delivered through the cudart dynamic library and all
its entry points are prefixed with cuda.

Common Concepts
Device

Both APIs provide a way to enumerate the devices available on the system, query
their properties, and select one of them for kernel executions.

One property of a device is its compute capability defined as a major revision number
and a minor revision number. In this version of CUDA, the major revision number
is 1 and the minor revision number is 0.
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By design, a host thread can execute device code on only one device. As a
consequence, multiple host threads are required to execute device code on multiple
devices.

Memory
Device memory can be allocated either as Znear memory or as CUDA arrays.

Linear memory exists on the device in a 32-bit address space, so separately allocated
entities can reference one another via pointers, for example, in a binary tree.

CUDA arrays are opaque memory layouts optimized for texture fetching. They are
one-dimensional or two-dimensional and composed of elements, each of which has
1, 2 or 4 components that may be signed or unsigned 8-, 16- or 32-bit integers,
16-bit floats (currently only supported through the driver API), or 32-bit floats.
CUDA arrays are only readable by kernels through texture fetching and may only be
bound to texture references with the same number of packed components.

Both linear memory and CUDA arrays are only readable and writable by the host
through the memory copy functions described in Sections 4.5.2.3 and 4.5.3.6.

OpenGL Interoperability

OpenGL buffer objects may be mapped into the address space of CUDA, either to
enable CUDA to read data written by OpenGL or to enable CUDA to write data
for consumption by OpenGL.

Direct3D Interoperability

Direct3D 9.0 vertex buffers may be mapped into the address space of CUDA, either
to enable CUDA to read data written by Direct3D or to enable CUDA to write data
for consumption by Direct3D.

A CUDA context may interoperate with only one Direct3D device at a time,
bracketed by calls to the begin/end functions described in Sections 4.5.2.6 and
4.5.3.9.

CUDA does not yet support:

Versions other than Direct3D 9.0,
Direct3D objects other than vertex buffers,

Mapping of more than one vertex buffers simultaneously.

Runtime API
Initialization

There is no explicit initialization function for the runtime API; it initializes the first
time a runtime function is called. One needs to keep this in mind when timing
runtime function calls and when interpreting the error code from the first call into
the runtime.

Device Management

The functions from Section B.1 are used to manage the devices present in the
system.
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cudaGetDeviceCount() and cudaGetDeviceProperties() provide a way
to enumerate these devices and retrieve their properties:

int deviceCount;

cudaGetDeviceCount(&deviceCount);

int device;

for (device = 0; device < deviceCount; ++device) {
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, device);

}

cudaSetDevice() is used to select the device associated to the host thread:

cudaSetDevice(device);

A device must be selected before any __global___ function or any function from
Appendix B is called. If this is not done by an explicit call to cudaSetDevice(),
device 0 is automatically selected and any subsequent explicit call to
cudaSetDevice() will have no effect.

Memory Management

The functions from Section B.2 are used to allocate and free device memory, access
the memory allocated for any variable declared in global memory space, and transfer
data between host and device memory.

Linear memory is allocated using cudaMal loc() or cudaMalloc2D() and freed
using cudaFree().

The following code sample allocates an array of 256 floating-point elements in linear
memoty:

float* devPtr;
cudaMal loc((void**)&devPtr, 256);

cudaMalloc2D() is recommended for allocations of 2D arrays as it makes sute
that the allocation is appropriately padded to meet the alignhment requirements
described in Section 6.1.2.1, therefore ensuring best performance when accessing
the row addresses or performing copies between arrays and other regions of device
memory. The returned pitch (or stride) must be used to access array elements. The
following code sample allocates a widthxheight 2D array of floating-point values
and shows how to loop over the array elements in device code:

// host code
float* devPtr;
int pitch;
cudaMal loc2D((void**)&devPtr, &pitch,
width * sizeof(float), height);
myKernel<<<100, 192>>>(devPtr);

// device code
__global__ void myKernel(float* devPtr)

{
for (int r = 0; r < height; ++r) {
float* row = (float*)((char*)devPtr + r * pitch);
for (int c = 0; c < width; ++c) {
float element = row[c];
}
}
}

CUDA Programming Guide Version 0.8.2



45.2.4

Chapter 4. Application Programming Interface

CUDA arrays are allocated using cudaMal locArray() and freed using
cudaFreeArray(). cudaMal locArray() requires a format desctiption created
using cudaCreateChannelDesc().

The following code sample allocates a widthxheight CUDA array of one 32-bit
floating-point component:

cudaChannelFormatDesc channelDesc =

cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
cudaArray cuArray;
cudaMal locArray(&cuArray, &channelDesc, width, height);
cudaGetSymbolAddress() is used to retrieve the address pointing to the
memory allocated for a variable declared in global memory space. The size of the
allocated memory is obtained through cudaGetSymbolSize().

Section B.2 lists all the various functions used to copy memory between linear
memory allocated with cudaMal loc(), linear memory allocated with
cudaMalloc2D(), CUDA arrays, and memory allocated for variables declared in
global or constant memory space.

The following code sample copies the 2D array to the CUDA array allocated in the
previous code samples:

cudaMemcpy2DToArray(&cuArray, 0, 0, devPtr, pitch, width, height,
cudaMemcpyDeviceToDevice);

The following code sample copies some host memory array to device memory:

float data[256];

int size = sizeof(data);

float* devPtr;

cudaMal loc((void**)&devPtr, size);

cudaMemcpy((void**)&devPtr, data, size, cudaMemcpyHostToDevice);
The following code sample copies some host memory array to constant memory:

__constant__ float constData[256];
float data[256];
cudaMemcpyToSymbol (constData, data, sizeof(data));

Texture Reference Management

The functions from Section B.3 are used to manage texture references.

Before a kernel can use a texture reference to read from texture memory, the texture
reference must be bound to a texture using cudaBindTexture() or
cudaBindTextureToArray().

The following code samples bind a texture reference to some linear memory pointed
to by devPtr:

Using the low-level API:
texture<float, 2, cudaReadModeElementType> texRef;
textureReference* texRefPtr;
cudaGetTextureReference(&texRefPtr, “texRef”);
cudaChannelFormatDesc channelDesc =

cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
cudaBindTexture(texRefPtr, devPtr, &channelDesc, size, 0);

Using the high-level API:
texture<float, 2, cudaReadModeElementType> texRef;

CUDA Programming Guide Version 0.8.2 29



Chapter 4. Application Programming Interface

4.5.2.5

4.5.2.6

4.5.2.7

30

cudaBindTexture(texRef, devPtr, size, 0);

The following code samples bind a texture reference to a CUDA array CUArray:

Using the low-level API:

texture<float, 2, cudaReadModeElementType> texRef;
textureReference* texRefPtr;
cudaGetTextureReference(&texRefPtr, “texRef”);
cudaChannelFormatDesc channelDesc;
cudaGetChannelDesc(&channelDesc, &cuArray);
cudaBindTextureToArray(texRef, &cuArray, &channelDesc);

Using the high-level API:

texture<float, 2, cudaReadModeElementType> texRef;
cudaBindTexture(texRef, cuArray);

cudaBindTexture() is used to unbind a texture reference.

OpenGL Interoperability

The functions from Section B.5 are used to control interoperability with OpenGL.
A buffer object needs to be registered to CUDA before it can be mapped. This is
done with cudaGLRegisterBufferObject():

GLuint bufferObj;
cudaGLRegisterBufferObject(bufferObj);

Once it is registered, a buffer object can be read from or written to by kernels using
the device memory address returned by cudaGLMapBufferObject():

GLuint bufferObj;
float* devPtr;
cudaGLMapBufferObject((void**)&devPtr, bufferObj);

Unmapping is done with cudaGLUnmapBufferObject() and unregistering with
cudaGLUnregisterBufferObject().

Direct3D Interoperability
The functions from Section B.6 are used to control interoperability with Direct3D.

Interoperability with Direct3D must be initialized using cudaD3D9Begin() and
terminated using cudaD3D9ENd().

In between these calls, a vertex object needs to be registered to CUDA before it can
be mapped. This is done with cudaD3D9RegisterVertexBuffer():

LPDIRECT3DVERTEXBUFFER9 vertexBuffer;
cudaD3D9RegisterVertexBuffer(vertexBuffer);

Once it is registered, a vertex buffer can be read from or written to by kernels using
the device memory address returned by cudaD3D9MapVertexBuffer():

LPDIRECT3DVERTEXBUFFER9 vertexBuffer;
float* devPtr;
cudaD3D9MapVertexBuffer((void**)&devPtr, vertexBuffer);

Unmapping is done with cudaD3D9UnmapVertexBuffer().

Debugging using the Device Emulation Mode

The programming environment does not include any native debug support for code
that runs on the device, but comes with a device emulation mode for the purpose of
debugging. When compiling an application is this mode (using the —~deviceemu
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option), the device code is compiled for and runs on the host, allowing the
developer to use the host’s native debugging support to debug the application as if it
were a host application. The preprocessor macro ___DEVICE_EMULATION__is
defined in this mode.

When running an application in device emulation mode, the programming model is
emulated by the runtime. For each thread in a thread block, the runtime creates a
thread on the host. The developer needs to make sure that:

O The host is able to run up to the maximum number of threads per block, plus
one for the master thread.

O Enough memory is available to run all threads, knowing that each thread gets
256 KB of stack.

Many features provided through the device emulation mode make it a very effective

debugging tool:

0O By using the host’s native debugging support developers can use all features that
the debugger supports, like setting breakpoints and inspecting data.

O Since device code is compiled to run on the host, the code can be augmented
with code that cannot run on the device, like input and output operations to files
ot to the screen (printf(), etc.).

O Since all data resides on the host, any device- or host-specific data can be read
from either device or host code; similatly, any device or host function can be
called from either device or host code.

O In case of incorrect usage of the synchronization intrinsic, the runtime detects
dead lock situations.

Developers must keep in mind that device emulation mode is emulating the device,
not simulating it. Therefore, device emulation mode is very useful in finding
algorithmic errors, but certain errors are hatrd to find:

O When a memory location is accessed in multiple threads within the grid at
potentially the same time, the results when running in device emulation mode
potentially differ from the results when running on the device, since in emulation
mode threads execute sequentially.

0 When dereferencing a pointer to global memory on the host or a pointer to host
memory on the device, device execution almost certainly fails in some undefined
way, whereas device emulation can produce correct results.

O Most of the time the same floating-point computation will not produce exactly
the same result when performed on the device as when performed on the host in
device emulation mode. This is expected since in general, all you need to get
different results for the same floating-point computation are slightly different
compiler options, let alone different compilers, different instruction sets, or
different architectures.

In particular, some host platforms store intermediate results of single-precision
floating-point calculations in extended precision registers, potentially resulting in
significant differences in accuracy when running in device emulation mode.
When this occurs, developers can try any of the following methods, none of
which is guaranteed to work:

» Declare some floating-point variables as volatile to force single-precision

storage;
» Use the —=FFloat-store compiler option of gcc,

CUDA Programming Guide Version 0.8.2 31



Chapter 4. Application Programming Interface

4.5.3

453.1

32

Use the /70p or /Tp compiler options of the Visual C++ compiler,

Use _FPU_GETCW(Q) and _FPU_SETCW(Q) on Linux or _controlfp()
on Windows to force single-precision floating-point computation for a
portion of the code by surrounding it with

unsigned int originalCW;

_FPU_GETCW(originalCW);

unsigned int cw = (originalCW & ~0x300) | 0x000;
_FPU_SETCW(cw);

or

unsigned int originalCW = _controlfp(0, 0);
_controlfp(_PC_24, MCW_PC);

at the beginning, to store the current value of the control word and change
it to force the mantissa to be stored in 24 bits using, and with

_FPU_SETCW(originalCW);

or

_controlfp(originalCW, Oxfffff);

at the end, to restore the original control word.

Unlike the GeFotce 8800 Seties and Quadro FX 5600/4600 (see Section 5.2),
host platforms also usually support denormalized numbers. This can lead to
dramatically different results between device emulation and device execution
modes since some computation might produce a finite result in one case and an
infinite result in the other.

Driver API

The driver API is a handle-based, imperative API: Most objects are referenced by
opaque handles that may be specified to functions to manipulate the objects.

The objects available in CUDA are summarized in Table 4-1.

Table 4-1. Objects Available in the CUDA Driver API

Object Handle Description

Device CUdevice CUDA-capable device

Context N/A Roughly equivalent to a CPU process

Module CUmodule Roughly equivalent to a dynamic library

Function CUfunction Kernel

Heap memory CUdeviceptr | Pointer to device memory

CUDA array CUarray Opaque container for 1D or 2D data on the device,
readable via texture references

Texture reference CUtexref Object that describes how to interpret texture memory data

Initialization

Initialization with culnit() is required before any function from Appendix C is
called (see Section C.1).
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Device Management

The functions from Section C.2 are used to manage the devices present in the
system.

cuDeviceGetCount() and cuDeviceGet() provide a way to enumerate these
devices and other functions from Section C.2 to retrieve their properties:

int deviceCount;
cuDeviceGetCount(&deviceCount);
int device;
for (int device = 0; device < deviceCount; ++device) {
CUdevice cuDevice;
cuDeviceGet(&cuDevice, device);
int major, minor;
cuDeviceComputeCapability(&major, &minor, cuDevice);

}

Context Management

The functions from Section C.3 are used to create, attach, and detach CUDA
contexts.

A CUDA context is analogous to a CPU process. All resources and actions
performed within the compute API are encapsulated inside a CUDA context, and
the system automatically cleans up these resources when the context is destroyed.
Besides objects such as modules and texture references, each context has its own
distinct 32-bit address space. As a result, CUdeviceptr values from different
CUDA contexts reference different memory locations.

Contexts have a one-to-one correspondence with host threads. A host thread may
have only one device context current at a time. For this reason, device contexts are
not explicitly referenced by handle. When a context is created with
cuCtxCreate(), it is made current to the calling host thread and its thread
affiliation cannot be changed.

CUDA functions that operate in a context (most functions that do not involve

device enumeration or context management) will return
CUDA_ERROR_INVALID_CONTEXT if a valid context is not current to the thread.

To facilitate interoperability between third party authored code operating in the
same context, the driver APl maintains a usage count that is incremented by each
distinct client of a given context. For example, if three libraries are loaded to use the
same CUDA context, each library must call cuCtxAttach() to increment the
usage count and cuCtxDetach() to decrement the usage count when the library is
done using the context. The context is destroyed when the usage count goes to 0.
For most libraries, it is expected that the application will have created a CUDA
context before loading or initializing the library; that way, the application can create
the context using its own heuristics, and the library simply operates on the context
handed to it.

Module Management

The functions from Section C.4 atre used to load and unload modules and to retrieve
handles or pointers to variables or functions defined in the module.

Modules are dynamically loadable packages of device code and data, akin to DLLs in
Windows, that are output by nvcc (see Section 4.2.5). The names for all symbols,
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including functions, global variables, and texture references, are maintained at
module scope so that modules written by independent third parties may interoperate
in the same CUDA context.

This code sample loads a module and retrieves a handle to some kernel:

CUmodule cuModule;

cuModulelLoad(&cuModule, “myModule.cubin’);

CUfunction cuFunction;

cuModuleGetFunction(&cuFunction, cuModule, “myKernel’);

Execution Control

The functions described in Section C.5 manage the execution of a kernel on the
device. cuFuncSetBlockShape() sets the number of threads per block for a
given function, and how their threadIDs are assigned. cuFuncSetSharedSize()
sets the size of shared memory for the function. The cuParam* () family of
functions is used specify the parameters that will be provided to the kernel the next
time cuLaunchGrid() or cuLaunch() is invoked to launch the kernel:

cuFuncSetBlockShape(cuFunction, blockWidth, blockHeight, 1);
int offset = 0;

int i;

cuParamSeti (cuFunction, offset, i);

offset += sizeof(i);

float T;

cuParamSetf(cuFunction, offset, T);

offset += sizeof(f);

char data[256];

cuParamSetv(cuFunction, offset, (void*)data, sizeof(data));
offset += sizeof(data);

cuParamSetSize(cuFunction, offset);
cuFuncSetSharedSize(cuFunction, numElements * sizeof(float));
cuLaunchGrid(cuFunction, gridWidth, gridHeight);

Memory Management

The functions from Section C.6 are used to allocate and free device memory and
transfer data between host and device memory.

Linear memory is allocated using cuMemAl loc() or cuMemAlloc2D() and freed
using cuMemFree ().

The following code sample allocates an array of 256 floating-point elements in linear
memoty:

CUdeviceptr devPtr;

cuMemAl loc((void**)&devPtr, 256);

cuMemAlloc2D() is recommended for allocations of 2D arrays as it makes sure
that the allocation is appropriately padded to meet the alignhment requirements
described in Section 6.1.2.1, therefore ensuring best performance when accessing
the row addresses or performing copies between arrays and other regions of device
memory. The returned pitch (or stride) must be used to access array elements. The
following code sample allocates a widthxheight 2D array of floating-point values
and shows how to loop over the array elements in device code:

// host code
CUdeviceptr devPtr;
int pitch;
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cuMemAl loc2D(&devPtr, &pitch,

width * sizeof(float), height, 4);
cuModuleGetFunction(&cuFunction, cuModule, “myKernel’);
cuFuncSetBlockShape(cuFunction, 192, 1, 1);
cuParamSeti (cuFunction, 0, devPtr);
cuParamSetSize(cuFunction, sizeof(devPtr));
cuLaunchGrid(cuFunction, 100, 1);

// device code
__global__ void myKernel (float* devPtr)

{
for (int r = 0; r < height; ++r) {
float* row = (float*)((char*)devPtr + r * pitch);
for (int ¢ = 0; c < width; ++c) {
float element = row[c];
}
}
}
CUDA arrays are created using CUArrayCreate() and destroyed using
cudaArrayDestroy().

The following code sample allocates a widthxheight CUDA array of one 32-bit
floating-point component:

CUDA_ARRAY_DESCRIPTOR desc;
desc.Format = CU_AD_FORMAT_FLOAT;
desc.NumPackedComponents = 1;
desc.Width = width;

desc.Height = height;

CUarray cuArray;
cuArrayCreate(&cuArray, &desc);

Section C.6 lists all the various functions used to copy memory between linear
memory allocated with cuMemAl loc (), linear memory allocated with
cuMemAlloc2D(), and CUDA arrays. The following code sample copies the 2D
array to the CUDA array allocated in the previous code samples:

CUDA_MEMCPY2D copyParam;

memset(&copyParam, 0, sizeof(copyParam));
copyParam._dstMemoryType = CU_MEMORYTYPE_ARRAY;
copyParam.dstArray = CuArray;
copyParam.srcMemoryType = CU_MEMORYTYPE_DEVICE;
copyParam.srcDevice = devPtr;
copyParam.srcPitch = pitch;
copyParam_WidthInBytes = width * sizeof(float);
copyParam_Height = height;
cuMemcpy2D(&copyParam) ;

The following code sample copies some host memory array to device memory:

float data[256];

int size = sizeof(data);

CUdeviceptr devPtr;

cudaMal loc((void**)&devPtr, size);

cuMemcpyStoD(devPtr, data, size);

Finally, cuMemAl locSystem() from Section C.6.4 and cuMemFreeSystem()
from Section C.6.5 can be used to allocate and free page-locked host memory. The
bandwidth between host memory and device memory is higher for page-locked host
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memory than for regular pageable memory allocated using mal loc(). However,
page-locked memory is a scarce resource, so allocations in page-locked memory will
start failing long before allocations in pageable memory. In addition, by reducing the
amount of physical memory available to the operating system for paging, allocating
too much page-locked memory reduces overall system performance.

cuMemAl locSystem()and cuMemFreeSystem() can be used with the runtime
APL

Texture Reference Management

The functions from Section C.7 are used to manage texture references.

Before a kernel can use a texture reference to read from texture memory, the texture
reference must be bound to a texture using cuTexRefSetAddress() or
cuTexRefSetArray().

The following code samples bind a texture reference to some linear memory pointed
to by devPtr:

texture<float, 2, cudaReadModeElementType> texRef;
CUtexref cuTexRef;

cuModuleGetTexRef(&cuTexRef, cuModule, “texRef”);
cuTexRefSetAddress(cuTexRef, devPtr, size);

The following code samples bind a texture reference to a CUDA array CUArray:

texture<float, 2, cudaReadModeElementType> texRef;

CUtexref cuTexRef;

cuModuleGetTexRef(&cuTexRef, cuModule, “texRef”);
cuTexRefSetArray(cuTexRef, cuArray, CU_TRSA_ OVERRIDE_FORMAT);

Section C.7 lists various functions used to set address mode, filter mode, format,
and other flags for some texture reference.

OpenGL Interoperability

The functions from Section C.8 are used to control interoperability with OpenGL.
Interoperability with OpenGL must be initialized using cuGLInit().

A buffer object needs to be registered to CUDA before it can be mapped. This is
done with cuGLRegisterBufferObject():

GLuint bufferObj;
cuGLRegisterBufferObject(bufferObj);

Once it is registered, a buffer object can be read from or written to by kernels using
the device memory address returned by cuGLMapBufferObject():

GLuint bufferObj;

CUdeviceptr devPtr;

int size;

cuGLMapBufferObject(&devPtr, &size, bufferObj);

Unmapping is done with cuGLUnmapBufferObject() and unregistering with
cuGLUnregisterBufferObject().

Direct3D Interoperability

The functions from Section B.6 are used to control interoperability with Direct3D.

Interoperability with Direct3D must be initialized using cuD3D9Begin() and
terminated using cuD3D9ENd().
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In between these calls, a vertex object needs to be registered to CUDA before it can
be mapped. This is done with cuD3D9RegisterVertexBuffer():

LPDIRECT3DVERTEXBUFFER9 vertexBuffer;
cuD3D9RegisterVertexBuffer(vertexBuffer);
Once it is registered, a vertex buffer can be read from or written to by kernels using

the device memory address returned by cuD3D9MapVertexBuffer():

LPDIRECT3DVERTEXBUFFER9 vertexBuffer;
CUdeviceptr devPtr;

int size;

cuD3D9MapVertexBuffer(&devPtr, &size, vertexBuffer);
Unmapping is done with cuD3D9UnmapVertexBuffer().
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GeForce 8800 Series and
Quadro FX 5600/4600
Technical Specification

General Specification

The GeForce 8800 Seties and Quadro FX 5600/4600 have the following

characteristics:
Number of Clock Amount of
multiprocessors frequency device memory
(GH2) (MB)
GeForce 8800 GTX 16 1.35 768
GeForce 8800 GTS 12 1.2 640
Quadro FX 5600 16 1.35 1500
Quadro FX 4600 12 1.2 768
O The maximum number of threads per block is 512;
O The maximum size of each dimension of a grid of thread blocks is 65535;
O The warp size is 32 threads;
O The number of registers per multiprocessor is 8192;
O The amount of shared memory available per multiprocessor is 16 KB divided

(M

(W]

into 16 banks (see Section 6.1.2.4);

The amount of constant memory available is 64 KB with a cache working set of
8 KB per multiprocessor;

The cache working set for 1D textures is 8 KB per multiprocessor;

The maximum number of blocks that can run concurrently on a multiprocessor
is 8;

The maximum number of warps that can run concurrently on a multiprocessor is
24;

The maximum number of threads that can run concurrently on a multiprocessor
is 768;
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O For a texture reference bound to a CUDA array, the maximum width is 26 and
the maximum height is 215;

O For a texture reference bound to linear memory, the maximum width is 227;

O Texture filtering weights are stored in 9-bit fixed point format with 8 bits of
fractional value.

Each multiprocessor is composed of eight processors, so that a multiprocessor is
able to process the 32 threads of a warp in four clock cycles.

The use of multiple GPUs as CUDA devices by an application running on a multi-
GPU system is only guaranteed to work if theses GPUs are of the same type. If the
system is in SLI or QUAD mode however, only one GPU can be used as a CUDA
device since all the GPUs are fused at the lowest levels in the driver stack. SLI or
QUAD mode needs to be turned off in the control panel for CUDA to be able to
see each GPU as separate devices.

Floating-Point Standard

The GeForce 8300 Series and Quadro FX 5600/4600 follow the IEEE-754
standard for single-precision binary floating-point arithmetic with the following
deviations:

0O Addition and multiplication are often combined into a single multiply-add
instruction (FMAD);

0 Division is implemented via the reciprocal in a non-standard-compliant way;

0 Square root is implemented via the reciprocal square root in a non-standard-
compliant way;

O For addition and multiplication, only round-to-nearest-even and

round-towards-zero are supported via static rounding modes; directed rounding
towards +/- infinity is not supported;

O

There is no dynamically configurable rounding mode;

0 Denormalized numbers are not supported; floating-point arithmetic and
comparison instructions convert denormalized operands to zero prior to the
floating-point operation;

(M

Underflowed results are flushed to zero;

0O There is no mechanism for detecting that a floating-point exception has occurred
and floating-point exceptions are always masked, but when an exception occurs
the masked response is standard compliant;

(W

Signaling NaNs are not supported.

0O The result of an operation involving one or more input NaNs is not one of the
input NaNs, but a canonical NaN of bit pattern Ox7fffffff. Note that in
accordance to the IEEE-754R standard, if one of the input parameters to min()
or max() is NaN, but not the other, the result is the non-NaN parameter.

The conversion of a floating-point value to an integer value in the case where the

floating-point value falls outside the range of the integer format is left undefined by

IEEE-754. For the GeForce 8800 Seties and Quadro FX 5600/4600, the behavior

is to clamp to the end of the supported range. This is unlike the x86 architecture

behaves.
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Instruction Performance

To process an instruction for a warp of threads, a multiprocessor must:

0 Read the instruction operands for each thread of the warp,

0 Execute the instruction,

0O Write the result for each thread of the warp.

Therefore, the effective instruction throughput depends on the nominal instruction
throughput as well as the memory latency and bandwidth. It is maximized by:

O Minimizing the use of instructions with low throughput (see Section 6.1.1),

0 Maximizing the use of the available memory bandwidth for each category of
memory (see Section 6.1.2),
0 Allowing the thread scheduler to overlap memory transactions with
mathematical computations as much as possible, which requires that:
» The program executed by the threads is of high arithmetic intensity, that is,
has a high number of arithmetic operations pet memory operation;

> There are many threads that can be run concutrently as detailed in
Section 6.2.

Instruction Throughput
Arithmetic Instructions

To issue one instruction for a warp, a multiprocessor takes:

0O 4 clock cycles for floating-point add, floating-point multiply, floating-point
multiply-add, integer add, bitwise operations, compare, min, max, type
conversion instruction;

l1og(x) (see Table A-2).

32-bit integer multiplication takes 16 clock cycles, but __mul24 and __umul24
(see Appendix A) provide signed and unsigned 24-bit integer multiplication in 4
clock cycles. Integer division and modulo operation are particularly costly and
should be avoided if possible or replaced with bitwise operations whenever possible:
If nis a power of 2, (1/n) is equivalent to (i>>1og2(n)) and (i%n) is

0 16 clock cycles for reciprocal, reciprocal squate root,
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equivalent to (1&(N-1)); the compiler will perform these conversions if n is
literal.

Other functions take more clock cycles as they are implemented as combinations of
several instructions.

Floating-point square root is implemented as a reciprocal square root followed by a
reciprocal, so it takes 32 clock cycles for a warp.

Floating-point division takes 36 clock cycles, but __ fdividef(x, Yy) providesa
faster version at 20 clock cycles (see Appendix A).

_ sin(x),___cos(x),__exp(x) take 32 clock cycles.

Sometimes, the compiler must insert conversion instructions, introducing additional
execution cycles. This is the case for:

Functions operating on char or short whose operands generally need to be
converted to Int,

Double-precision floating-point constants (defined without any type suffix) used
as input to single-precision floating-point computations,

Single-precision floating-point variables used as input parameters to the double-
precision version of the mathematical functions defined in Table A-1.

The two last cases can be avoided by using:

Single-precision floating-point constants, defined with an ¥ suffix such as
3.141592653589793F, 1.0T, 0.57,

The single-precision version of the mathematical functions, defined with an ¥
suffix as well, such as sinf(), logf(), expf().

For single precision code, we highly recommend use of the single precision math
functions. When compiling for devices without native double precision support, the
double precision math functions are by default mapped to their single precision
equivalents. However, on those future devices that will support double precision,
these functions will map to double precision implementations.

Control Flow Instructions

Any flow control instruction (if, switch, do, for, while) can significantly
impact the effective instruction throughput by causing threads of the same warp to
diverge, that is, to follow different execution paths. If this happens, the different
executions paths have to be serialized, increasing the total number of instructions
executed for this warp. When all the different execution paths have completed, the
threads converge back to the same execution path.

To obtain best performance in cases where the control flow depends on the thread
1D, the controlling condition should be written so as to minimize the number of
divergent warps. This is possible because the distribution of the warps across the
block is deterministic as mentioned in Section 3.2. A trivial example is when the
controlling condition only depends on (threadldx / WSIZE) where WSIZE is
the warp size. In this case, no warp diverges since the controlling condition is
perfectly aligned with the warps.

Sometimes, the compiler may unroll loops or it may optimize out I or switch
statements by using branch predication instead, as detailed below. In these cases, no
warp can ever diverge.
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When using branch predication none of the instructions whose execution depends
on the controlling condition gets skipped. Instead, each of them is associated with a
per-thread condition code or predicate that is set to true or false based on the
controlling condition and although each of these instructions gets scheduled for
execution, only the instructions with a true predicate are actually executed.
Instructions with a false predicate do not write results, and also do not evaluate
addresses or read operands.

The compiler replaces a branch instruction with predicated instructions only if the
number of instructions controlled by the branch condition is less or equal to a
certain threshold: If the compiler determines that the condition is likely to produce
many divergent warps, this threshold is 7, otherwise it is 4.

Memory Instructions

Memory instructions include any instruction that reads from or writes to shared or
global memory. A multiprocessor takes 4 clock cycles to issue one memory
instruction for a warp. When accessing global memory, there are, in addition, 400 to
600 clock cycles of memory latency.

As an example, the assignment operator in the following sample code:

__shared__ float shared[32];
__device__ float device[32];
shared[threadldx.x] = device[threadldx.x];

takes 4 clock cycles to issue a read from global memory, 4 clock cycles to issue a
write to shared memory, but above all 400 to 600 clock cycles to read a float from
global memory.

Much of this global memory latency can be hidden by the thread scheduler if there
are sufficient independent arithmetic instructions that can be issued while waiting
for the global memory access to complete.

Synchronization Instruction

__syncthreads takes 4 clock cycles to issue for a warp if no thread has to wait
for any other threads.

Memory Bandwidth

The effective bandwidth of each memory space depends significantly on the
memory access pattern as detailed in the following sub-sections.

Since device memory is of much higher latency and lower bandwidth than on-chip
memory, device memory accesses should be minimized. A typical programming
pattern is to stage data coming from device memory into shared memory; in other
words, to have each thread of a block:

Load data from device memory to shared memory,

Synchronize with all the other threads of the block so that each thread can safely
read shared memory locations that were written by different threads,

Process the data in shared memory,

Synchronize again if necessary to make sure that shared memory has been
updated with the results,

Write the results back to device memory.
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Global Memory

The global memory space is not cached, so it is all the more important to follow the
right access pattern to get maximum memory bandwidth, especially given how
costly accesses to device memory are.

First, the device is capable of reading 32-bit, 64-bit, or 128-bit words from global
memory into registers in a single instruction. To have assignments such as:
__device__ type device[32];

type data = device[tid];

compile to a single load instruction, type must be such that sizeof(type) is
equal to 4, 8, or 16 and variables of type type must be aligned to 4, 8, or 16 bytes
(that is, have the 2, 3, or 4 least significant bits of their address equal to zero).

The alignment requirement is automatically fulfilled for built-in types of
Section 4.3.1.1 like Float2 or Float4.

For structures, the size and alignment requirements can be enforced by the compiler
using the alignment specifiers __align__(8) or __align__(16), such as

struct __align(8)__ {

float a;
float b;
};
or
struct __align(16)__ {
float a;
float b;
float c;
float d;
}s

For structures larger than 16 bytes, the compiler generates several load instructions.

To ensure that it generates the minimum number of instructions, such structures
should be defined with __align__(16) , such as

struct __align(16)__ {
float a;
float b;
float c;
float d;
float e;
}:
which is compiled into two 128-bit load instructions instead of five 32-bit load
instructions.

Second, the global memory addresses simultaneously accessed by each thread of a
half-warp during the execution of a single read or write instruction should be
arranged so that the memory accesses can be coalesced into a single contiguous,
alighed memory access.

More precisely, in each half-warp, thread number N within the half-warp should
access address

HalfWarpBaseAddress + N

where HalfWarpBaseAddress is of type type* and type is such that it meets
the size and alignment requirements discussed above. Moreover,
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HalftWarpBaseAddress should be aligned to 16*sizeof(type) bytes; in other
wortds, it should have its log2(16*sizeof(type)) least significant bits equal to
zero. Any address BaseAddress of a variable residing in global memory or
returned by one of the memory allocation routines from Sections B.2 or C.6 is
always aligned to at least 256 bytes, so to satisfy the memory alignment constraint,
HalfWarpBaseAddress-BaseAddress should be a multiple of
16*sizeof(type).

Note that if a half-warp fulfills all the requirements above, the per-thread memory
accesses are coalesced even if some threads of the half-warp do not actually access
memory.

We recommend fulfilling the coalescing requirements for the entire warp as
opposed to only each of its halves separately because future devices will necessitate
it for proper coalescing.

A common global memory access pattern is when each thread of index (tx, ty)
accesses one element of a 2D array located at address BaseAddress of type
type™* and of width width using the following address:

BaseAddress + width * ty + tx

In such a case, one gets memory coalescing for all half-warps of the thread block
only if:

The width of the thread block is a multiple of half the warp size;
width is a multiple of 16.

In particular, this means that an array whose width is not a multiple of 16 will be
accessed much more efficiently if it is actually allocated with a width rounded up to
the closest multiple of 16 and its rows padded accordingly.

The cuMemAlloc2D() and cudaMal loc2D() functions and associated memory
copy functions described in Sections B.2 and C.6 enable developers to write non-
hardware-dependent code to allocate arrays that conform to these constraints.

Constant Memory

The constant memory space is cached so a read from constant memory costs one
memory read from device memory only on a cache miss, otherwise it just costs one
read from the constant cache.

For all threads of a half-warp, reading from the constant cache is as fast as reading
from a register as long as all threads read the same address. The cost scales linearly
with the number of different addresses read by all threads. We recommend having
all threads of the entire warp read the same address as opposed to all threads within
each of its halves only, as future devices will require it for full speed read.

Texture Memory

The texture memory space is cached so a texture fetch costs one memory read from
device memory only on a cache miss, otherwise it just costs one read from the
texture cache.

The texture cache is optimized for 2D spatial locality, so threads of the same warp
that read texture addresses that are close together will achieve best performance.

Device memory reads through texture fetching present several advantages over
reads from global or constant memory:
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O

They are cached,

0O They are not subject to the constraints on memory access patterns that global or
constant memory reads must respect to get good performance (see
Sections 6.1.2.1 and 6.1.2.2);

O The latency of addressing calculations is hidden better, possibly improving
performance for applications that perform random accesses to the data;

0 Packed data may be broadcast to separate variables in a single operation;

O 8-bit and 16-bit integer input data may be optionally converted to 32-bit floating-
point values in the range [0, 1].

If the texture is a CUDA array (see Section 4.3.4), there are other advantages:

O There are several addressing modes available for edge cases;

0O They can be optionally filtered.
Shared Memory

Because it is on-chip, the shared memory space is much faster than the local and
global memory spaces. In fact, for all threads of a warp, accessing the shared
memory is as fast as accessing a register as long as there are no bank conflicts
between the threads, as detailed below.

To achieve high memory bandwidth, shared memory is divided into equally-sized
memory modules, called banks, which can be accessed simultaneously. So, any
memory read or write request made of 7 addresses that fall in # distinct memory
banks can be serviced simultaneously, yielding an effective bandwidth that is # times
as high as the bandwidth of a single module.

However, if two addresses of a memory request fall in the same memory bank, there
is a bank conflict and the access has to be serialized. The hardware splits a memory
request with bank conflicts into as many separate conflict-free requests as necessary,
decreasing the effective bandwidth by a factor equal to the number of separate
memory requests. If the number of separate memory requests is 7, the initial
memory request is said to cause #-way bank conflicts.

To get maximum performance, it is therefore important to understand how memory
addresses map to memory banks in order to schedule the memory requests so as to
minimize bank conflicts.

In the case of the shared memory space, the banks are organized such that
successive 32-bit words are assigned to successive banks and each bank has a
bandwidth of 32 bits per two clock cycles.

For the GeForce 8800 Seties and Quadro FX 5600/4600, the warp size is 32 and
the number of banks is 16 (see Section 5.1); a shared memory request for a warp is
split into one request for the first half of the warp and one request for the second
half of the warp. As a consequence, there can be no bank conflict between a thread
belonging to the first half of a warp and a thread belonging to the second half of the
same warp.

A common case is for each thread to access a 32-bit word from an array indexed by
the thread ID tid and with some stride S:

__shared__ float shared[32];
float data = shared[Baselndex + s * tid];
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In this case, the threads tid and tid+n access the same bank whenever s*n is a
multiple of the number of banks m or equivalently, whenever n is a multiple of m/d
where d is the greatest common divisor of m and S. As a consequence, there will be
no bank conflict only if half the warp size is less than or equal to m/d. For the
GeForce 8800 Series and Quadro FX 5600/4600, this translates to no bank conflict
only if d is equal to 1, or in other words, only if S is odd since m is a power of two.

Figure 6-1 and Figure 6-2 show some examples of conflict-free memory accesses
while Figure 6-3 shows some examples of memory accesses that cause bank
conflicts.

Other cases worth mentioning are when each thread accesses an element that is
smaller or larger than 32 bits in size. For example, there will be bank conflicts if an
array of char is accessed the following way:

__shared__ char shared[32];

char data = shared[Baselndex + tid];

because shared[0], shared[1], shared[2], and shared[3], for example,
belong to the same bank. There will not be any bank conflict however, if the same
array is accessed the following way:

char data = shared[Baselndex + 4 * tid];
A structure assignment is compiled into as many memory requests as there are
members in the structure, so the following code, for example:

__shared__ struct type shared[32];
struct type data = shared[Baselndex + tid];

results in:

Three separate memory reads without bank conflicts if type is defined as

struct type {
float x, y, z;
};

since each member is accessed with a stride of three 32-bit words;

Two separate memory reads with bank conflicts if type is defined as

struct type {
float x, y;

¥

since each member is accessed with a stride of two 32-bit words;

Two separate memory reads with bank conflicts if type is defined as

struct type {
float f;
char c;
¥

since each member is accessed with a stride of five bytes.

Finally, shared memory also features a broadcast mechanism whereby a 32-bit word
can be read and broadcast to several threads simultaneously when servicing one
memory read request. This reduces the number of bank conflicts when several
threads of a half-warp read from an address within the same 32-bit word. More
precisely, a memory read request made of several addresses is serviced in several
steps over time — one step every two clock cycles — by servicing one conflict-free
subset of these addresses per step until all addresses have been serviced; at each

CUDA Programming Guide Version 0.8.2 49



Chapter 6. Performance Guidelines

50

step, the subset is built from the remaining addresses that have yet to be setviced
using the following procedure:

O Select one of the words pointed to by the remaining addresses as the broadcast
word,

O Include in the subset:
0 All addresses that are within the broadcast word,
O One address for each bank pointed to by the remaining addresses.

Which word is selected as the broadcast word and which address is picked up for

each bank at each cycle are unspecified.

A common conflict-free case is when all threads of a half-warp read from an address
within the same 32-bit word.

Figure 6-4 shows some examples of memory read accesses that involve the
broadcast mechanism.
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Thread 0 Bank O Thread O Bank O

Z
Thread 1 Bank 1 Thread 1 Bank 1
Thread 2 Bank 2 Thread 2 Bank 2
Thread 3 Bank 3 Thread 3 r Bank 3
Thread 4 Bank 4 Thread 4 Bank 4

7
Thread 5 Bank 5 Thread 5 Bank 5
Thread 6 Bank 6 Thread 6 Bank 6
Thread 7 Bank 7 Thread 7 Bank 7
Thread 8 Bank 8 Thread 8 Bank 8

Z
Thread 9 Bank 9 Thread 9 Bank 9
Thread 10 Bank 10 Thread 10 Bank 10
Thread 11 Bank 11 Thread 11 Bank 11
Thread 12 Bank 12 Thread 12 Bank 12
Thread 13 Bank 13 Thread 13 Bank 13

Z
Thread 14 Bank 14 Thread 14 Bank 14
Thread 15 Bank 15 Thread 15 ’ Bank 15

Left: linear addressing with a stride of one 32-bit word.
Right: random permutation.

Figure 6-1. Examples of Shared Memory Access Patterns
without Bank Conflicts
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Thread O

Bank O

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 9

Thread 10

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

/

Linear addressing with a stride of three 32-bit words.

Figure 6-

2.

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 8

Bank 9

Bank 10

Bank 11

Bank 12

Bank 13

Bank 14

& Bank 15

Example of a Shared Memory Access Pattern
without Bank Conflicts
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Thread 0 [ —%"" Bank 0 Thread 0 [ Bank O
,.
Thread 1 Bank 1 Thread 1 Bank 1
Thread 2 Bank 2 Thread 2 Bank 2
”
Thread 3 Bank 3 Thread 3 Bank 3
Thread 4 Bank 4 Thread 4 Bank 4
Thread 5 Bank 5 Thread 5 Bank 5
Thread 6 Bank 6 Thread 6 > Bank 6
Thread 7 Bank 7 Thread 7 Bank 7
Thread 8 Bank 8 Thread 8 Bank 8
Thread 9 Bank 9 Thread 9 Bank 9
Thread 10 Bank 10 Thread 10 ’ Bank 10
Thread 11 Bank 11 Thread 11 Bank 11
Thread 12 Bank 12 Thread 12 ' Bank 12
Thread 13 Bank 13 Thread 13 Bank 13
Thread 14 Bank 14 Thread 14 Bank 14
Thread 15 [ Bank 15 Thread 15 ’ Bank 15

Left: Linear addressing with a stride of two 32-bit words causes 2-way bank conflicts.
Right: Linear addressing with a stride of eight 32-bit words causes 8-way bank conflicts.

Figure 6-3. Examples of Shared Memory Access Patterns
with Bank Conflicts
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Thread O Bank O Thread O Bank O
Thread 1 Bank 1 Thread 1 Bank 1
Thread 2 Bank 2 Thread 2 Bank 2
Thread 3 Bank 3 Thread 3 Bank 3
Thread 4 Bank 4 Thread 4 Bank 4
Thread 5 Bank 5 Thread 5 Bank 5
Thread 6 Bank 6 Thread 6 Bank 6
Thread 7 Bank 7 Thread 7 Bank 7
Thread 8 Bank 8 Thread 8 Bank 8
Thread 9 Bank 9 Thread 9 Bank 9
Thread 10 Bank 10 Thread 10 Bank 10
Thread 11 l Bank 11 Thread 11 Bank 11
Thread 12 l Bank 12 Thread 12 Bank 12
Thread 13 ! Bank 13 Thread 13 Bank 13
7
Thread 14 ’ Bank 14 Thread 14 Bank 14
Thread 15 ’ Bank 15 Thread 15 Bank 15

Left: This access pattern is conflict-free since all threads read from an address within the same 32-bit
word.

Right: This access pattern causes either no bank conflicts if the word from bank 5 is chosen as the
broadcast word during the first step or 2-way bank conflicts, otherwise.

Figure 6-4. Example of Shared Memory Read Access
Patterns with Broadcast

CUDA Programming Guide Version 0.8.2



6.1.2.5

6.2

Chapter 6. Performance Guidelines

Registers

Generally, accessing a register is zero extra clock cycles per instruction, but delays
may occur due to register read-after-write dependencies and register memory bank
conflicts.

The delays introduced by read-after-write dependencies can be ignored as soon as
there are at least 192 concurrent threads per multiprocessor to hide them.

The compiler and thread scheduler schedule the instructions as optimally as possible
to avoid register memory bank conflicts; the application has no control over these.
In particular, there is no need to pack data into Float4 or int4 types.

Number of Threads per Block

Given a total number of threads per grid, the number of threads per block, or
equivalently the number of blocks, should be chosen to maximize the utilization of
the available computing resources. This means that there should be at least as many
blocks as there are multiprocessors in the device.

Furthermore, running only one block per multiprocessor will force the
multiprocessor to idle during thread synchronization and also during device memory
reads if there are not enough threads per block to cover the load latency. It is
therefore better to allow for two or more blocks to run concurrently on each
multiprocessor to allow overlap between blocks that wait and blocks that can run.
For this to happen, not only should there be at least twice as many blocks as there
are multiprocessors in the device, but also the amount of allocated shared memory
per block should be at most half the total amount of shared memory available per
multiprocessor (see Section 3.2). More thread blocks stream in pipeline fashion
through the device and amortize overhead even more.

With a high enough number of blocks, the number of threads per block should be
chosen as a multiple of the warp size to avoid wasting computing resources with
under-populated warps. Allocating more threads per block is better for efficient
time slicing, but the more threads per block, the fewer registers are available per
thread. This might prevent a kernel invocation from succeeding if the kernel
compiles to more registers than are allowed by the execution configuration.

For the GeForce 8800 Seties and Quadro FX 5600/4600, the number of registers
available per thread is equal to:

R
B x ceil(T,32)
where R is the total number of registers per multiprocessor given in Section 5.1, B is

the number of concurrent blocks, T is the number of threads per block, and
¢cei(T, 32) is T rounded up to the nearest multiple of 32.

64 threads per block is minimal and makes sense only if there are multiple
concurrent blocks. 192 or 256 threads per block is better and usually allows for
enough registers to compile.

The number of blocks per grid should be at least 100 if one wants it to scale to
future devices; 1000 blocks will scale across several generations.
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The ratio of the number of warps running concurrently on a multiprocessor to the
maximum number of warps that can run concurrently (given in Section 5.1) is called
the multiprocessor occupancy. In order to maximize occupancy, the compiler attempts
to minimize register usage and programmers need to choose execution
configurations with care. The CUDA Software Development Kit provides a
spreadsheet to assist programmers in choosing thread block size based on shared
memory and register requirements.

Data Transfer between Host and Device

The bandwidth between the device and the device memory is much higher than the
bandwidth between the device memory and the host memory. Therefore, one
should strive to minimize data transfer between the host and the device. For
example, intermediate data structures may be created in device memory, operated on
by the device, and destroyed without ever being mapped by the host or copied to
host memory.

Also, because of the overhead associated with each transfer, batching many small
transfers into a big one always performs much better than making each transfer
separately.
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Example of Matrix Multiplication

Overview

The task of computing the product C of two matrices .4 and B of dimensions
(wA, hA) and (wB, m.A) respectively, is split among several threads in the following
way:

0 Each thread block is responsible for computing one square sub-matrix Cj,;, of C;

0O Each thread within the block is responsible for computing one element of Ciy.

The dimension block_size of Ciuis chosen equal to 16, so that the number of threads
per block is a multiple of the warp size (Section 6.2) and remains below the
maximum number of threads per block (Section 5.1).

As illustrated in Figure 7-1, Cyy is equal to the product of two rectangular matrices:
the sub-matrix of .4 of dimension (wA4, block_size) that has the same line indices as
Ciu, and the sub-matrix of B of dimension (block_size, 12A) that has the same column
indices as Cyy. In order to fit into the device’s resources, these two rectangular
matrices are divided into as many square matrices of dimension block_size as
necessary and Cj, is computed as the sum of the products of these square matrices.
Each of these products is performed by first loading the two corresponding square
matrices from global memory to shared memory with one thread loading one
element of each matrix, and then by having each thread compute one element of the
product. Each thread accumulates the result of each of these products into a register
and once done writes the result to global memory.

By blocking the computation this way, we take advantage of fast shared memory
and save a lot of global memory bandwidth since .4 and B are read from global
memory only (wA / block_size) times.

Nonetheless, this example has been written for clarity of exposition to illustrate
various CUDA programming principles, not with the goal of providing a
high-performance kernel for generic matrix multiplication and should not be
construed as such.
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Each thread block computes one sub-matrix Cq, of C. Each thread within the block
computes one element of Cgyp.

Figure 7-1. Matrix Multiplication
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7.2 Source Code Listing

// Thread block size
#define BLOCK_SIZE 16

// Forward declaration of the device multiplication function
__global__ void Muld(float*, float*, int, int, float*);

// Host multiplication function
// Compute C = A * B

//
//
//

hA is the height of A
wA iIs the width of A
wB is the width of B

void Mul(const float* A, const float* B, int hA, int wA, iInt wB,

{

float* C)
int size;

// Load A and B to the device

float* Ad;

size = hA * wA * sizeof(float);

cudaMal loc((void**)&Ad, size);

cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);
float* Bd;

size = wA * wB * sizeof(float);
cudaMalloc((void**)&Bd, size);

cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);

// Allocate C on the device
float* Cd;

size = hA * wB * sizeof(float);
cudaMal loc((void**)&Cd, size);

// Compute the execution configuration assuming

// the matrix dimensions are multiples of BLOCK_SIZE
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid(wB / dimBlock.x, hA / dimBlock.y);

// Launch the device computation
Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd);

// Read C from the device
cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(Ad);
cudaFree(Bd);
cudaFree(Cd);
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// Device multiplication function called by Mul()
// Compute C = A * B
// WA is the width of A
// wB is the width of B
_ global__ void Muld(float* A, float* B, int wA, int wB, float* C)
{
// Block index
int bx blockldx.x;
int by = blockldx.y;

// Thread index
int tx = threadldx.x;
int ty = threadldx.y;

// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;

// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;

// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;

// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;

// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;

// The element of the block sub-matrix that is computed
// by the thread
float Csub = 0O;

// Loop over all the sub-matrices of A and B required to
// compute the block sub-matrix
for (int a = aBegin, b = bBegin;

a <= akEnd;

a += aStep, b += bStep) {

// Shared memory for the sub-matrix of A
__shared__ float As[BLOCK_SI1ZE][BLOCK_SIZE];

// Shared memory for the sub-matrix of B
__shared__ float Bs[BLOCK_SI1ZE][BLOCK_SIZE];

// Load the matrices from global memory to shared memory;
// each thread loads one element of each matrix
As[ty][tx] = A[a + WA * ty + txX];

Bs[ty][tx] = B[b + wB * ty + txX];

// Synchronize to make sure the matrices are loaded
__syncthreads();

// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)
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Csub += As[ty][k] * Bs[k][tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();

}

// Write the block sub-matrix to global memory;
// each thread writes one element

int ¢ = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;

7.3 Source Code Walkthrough

'The source code contains two functions:

O Mul (), a host function serving as a wrapper to Muld();
0 Muld(), a kernel that executes the matrix multiplication on the device.

731 MulQ

Mul Q) takes as input:

0 Two pointers to host memory that point to the elements of .4 and B,
O The height and width of A4 and the width of B,
O A pointer to host memory that points where C should be written.

Mul Q) performs the following operations:

O It allocates enough global memory to store .4, B, and C using cudaMalloc();
It copies A4 and B from host memory to global memory using cudaMemcpy();
It calls Muld () to compute C on the device;

It copies C from global memory to host memory using cudaMemcpy Q);

UO00DO0

It frees the global memory allocated for .4, B, and C using cudaFree().

732 MuldQ

Muld() has the same input as Mul (), except that pointers point to device memory
instead of host memory.

For each block, Muld()iterates through all the sub-matrices of .4 and B required to
compute Cgy. At each iteration:

O It loads one sub-matrix of .4 and one sub-matrix of B from global memory to
shared memory;

O It synchronizes to make sure that both sub-matrices are fully loaded by all the
threads within the block;

O It computes the product of the two sub-matrices and adds it to the product
obtained during the previous iteration;
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It synchronizes again to make sure that the product of the two sub-matrices is
done before starting the next iteration.

Once all sub-matrices have been handled, Cyy is fully computed and Muld() writes
it to global memory.

Muld() is written to maximize memory performance according to Section 6.1.2.1
and 6.1.2.4.

Indeed, assuming that WA and wB are multiples of 16 as suggested in Section 6.1.2.1,
global memory coalescing is ensured because @, b, and ¢ are all multiples of
BLOCK_SIZE, which is equal to 16.

There is also no shared memory bank conflict since for each half-warp, ty and K are
the same for all threads and tX varies from O to 15, so each thread accesses a
different bank for the memory accesses As[ty][tx], Bs[ty][tx], and
Bs[k][tx] and the same bank for the memory access As[ty] [Kk].
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Table A-1 below lists all the mathematical standard library functions supported by
the CUDA runtime library. It also specifies the error bounds of each function when
executed on the device and on the host, in case the host does no supply the
function. These bounds are generated from extensive but not exhaustive tests, so
these are not guaranteed bounds. For every function func(), the CUDA runtime
also supports its single-precision counterpart fFuncf() when applicable, with the

same error bounds.

Addition and multiplication are IEEE-compliant, so have a maximum error of
0.5 ulp. They are however often combined into a single multiply-add instruction
(FMAD), which truncates the intermediate result of the multiplication.

The recommended way to round a floating-point operand to an integer, with the
result being a floating-point number is rintf(), not roundf(). The reason is that
roundf () maps to an 8-instruction sequence, whereas rintf() maps to a single

instruction.

truncf(), ceilT(), and Floorf() cach map to a single instruction as well.

Table A-1. Mathematical Standard Library Functions with
Maximum ULP Error
Function Maximum ulp error
x/y 2 (full range)
1/x 1 (full range)
1/sqrt(x) 2 (full range)
sqrt(x) 3 (full range)
cbrt(x) 1 (full range)
hypot(x) 3 (full range)
exp(x) 2 (full range)
exp2(x) 2 (full range)
expml(x) 4 (full range)
log(x) 3 (full range)
log2(x) 4 (full range)
1og1l0(x) 4 (full range)
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Function Maximum ulp error

loglp(x) 4 (full range)

sin(x) 2 (inside interval -12988 ... +12988; larger outside)
cos(x) 3 (inside interval -12988 ... +12988; larger outside)
tan(x) 4 (inside interval -12988 ... +12988; larger outside)
asin(x) 4 (full range)

acos(x) 3 (full range)

atan(x) 2 (full range)

atan2(y, X) 3 (full range)

sinh(x) 3 (full range)

cosh(x) 2 (full range)

tanh(x) 2 (full range)

asinh(x) 3 (full range)

acosh(x) 5 (full range)

atanh(x) 4 (full range)

pow(X, y) 16 (for x outside interval 0.75 ... 1.195; larger for x inside)
erf(x) 4 (full range)

erfc(x) 8 (full range)

Igamma(x) 6 (outside interval -11 ... -2.166; larger inside)

frexp(x, exp)

0 (full range)

ldexp(x, exp)

0 (full range)

scalbn(x, n)

0 (full range)

logb(x) 0 (full range)
ilogh(x) 0 (full range)
fmod(x, y) 0 (full range)
modf(x, iptr) 0 (full range)
fdim(x, y) 0 (full range)
trunc(x) 0 (full range)
round(x) 0 (full range)
rint(x) 0 (full range)
nearbyint(x) 0 (full range)
ceil(X) 0 (full range)
Ffloor(x) 0 (full range)
signbit(x) N/A
isinf(x) N/A
isnan(x) N/A
Isfinite(X) N/A
Copysign(x, Yy) N/A
Min(x, y) N/A
Max(x, Yy) N/A
abs(x) N/A
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For some of the functions of Table A-1, a less accurate, but faster version exists
with the same name prefixed with __ (such as __sin(X)). These functions are
listed in Table A-2. The error bounds for the functions prefixed with __ are
GPU-specific.

Both the regular floating-point division and __fdividef(X, y) have the same
accuracy, but for 2126 <y <2128 fdividef(X, Yy) delivers a result of zero,
whereas the regular division delivers the correct result to within the accuracy stated
in Table A-1. Also, for 2126 <y < 2128 if X is infinity, _ Fdividef(x, y) delivers
a NaN (as a result of multiplying infinity by zero), while the regular division returns
infinity.

__[ulmul24(x, y) computes the product of the 24 least significant bits of the
integer parameters X and Y and delivers the 32 least significant bits of the result. If
any of the 8 most significant bits of either X or Yy are set, the result is undefined.

__[ulmulhi(x, y) computes the product of the integer parameters X and y and
delivers the 32 most significant bits of the 64-bit result.

Table A-2.  Fast Mathematical Functions Supported by the
CUDA Runtime Library with Respective Error
Bounds for the GeForce 8800 Series and
Quadro FX 5600/4600

Function Error bounds

__Fdivide(x, y) For y in [27%%, 2'%], the maximum ulp error is 2.

_exp(x) The maximum ulp error is
2 + floor(abs(1.16 * x)).

__log(x) For X in [0.5, 2], the maximum absolute error is 2724,
otherwise, the maximum ulp error is 3.

__log2(x) For X in [0.5, 2], the maximum absolute error is 2%,
otherwise, the maximum ulp error is 2.

__loglo(x) For X in [0.5, 2], the maximum absolute error is 2%,
otherwise, the maximum ulp error is 3.

__sin(x) For X in [-r, ], the maximum absolute error is 22!, and
larger otherwise.

__cos(x) For X in [-r, ], the maximum absolute error is 2%, and
larger otherwise.

__tan(X) Derived from its implementation as
_sin(xX) * 1/ _ _cos(X).

__pow(X, Y) Derived from its implementation as
exp2(y * __1og2(x)).

_ mul24(x, y) N/A

_umul24(x, y)

__mulhi(x, y) N/A

_umulhi(x, y)
__int_as_float(x) N/A
__Ffloat_as_int(x) N/A
__saturate(x) N/A
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There are two levels for the runtime API.

The low-level API (cuda_runtime_api .h) is a C-style interface that does not
require compiling with nvcc.

The high-level API (cuda_runtime.h) is a C++-style interface built on top of the
low-level API. It wraps some of the low level API routines, using overloading,
references and default arguments. These wrappers can be used from C++ code and
can be compiled with any C++ compiler. The high-level API also has some CUDA-
specific wrappers that wrap low-level routines that deal with symbols, textures, and
device functions. These wrappers require the use of NVCC because they depend on
code being generated by the compiler (see Section 4.2.5). For example, the
execution configuration syntax described in Section 4.2.3 to invoke kernels is only
available in source code compiled with nvcce.

Device Management

cudaGetDeviceCount()

cudaError_t cudaGetDeviceCount(int* count);

returns in *count the number of devices currently available for execution.

cudaGetDeviceProperties()

cudaError_t cudaGetDeviceProperties(struct cudaDeviceProp* prop,
int dev);

returns in *prop the properties of device dev. The cudaDeviceProp structure is
defined as:

struct cudaDeviceProp {
char* name;
size_t bytes;
int major;
int minor;
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where:

name is an ASCII string identifying the device;
bytes is the total amount of memory available on the device in bytes;

major and minor are the major and minor revision numbets.

B.1.3 cudaChooseDevice()

cudaError_t cudaChooseDevice(int* dev,
const struct cudaDeviceProp& prop);

returns in *devV the device which properties best match *prop.

B.1.4 cudaSetDevice()

cudaError_t cudaSetDevice(int dev);

records dev as the device on which the active host thread executes the device code.

B.1.5 cudaGetDevice()

cudaError_t cudaGetDevice(int* dev);

returns in *dev the device on which the active host thread executes the device
code.

B.2 Memory Management

B.2.1 cudaMalloc()

cudaError_t cudaMalloc(void** devPtr, size_t count);

allocates count bytes of linear memory on the device and returns in *devPtr a
pointer to the allocated memory. The allocated memory is suitably aligned for any
kind of variable. The memory is not cleared. cudaMal loc() returns
cudaErrorMemoryAl location in case of failure.

B.2.2 cudaMalloc2D()

CUresult cudaMalloc2D(void** devPtr,

unsigned int* pitch,

unsigned int widthInBytes,

unsigned int height);
allocates at least widthInBytes*height bytes of linear memory on the device
and returns in *devPtr a pointer to the allocated memory. The function may pad
the allocation to ensure that corresponding pointers in any given row will continue
to meet the alighment requirements for coalescing as the address is updated from
row to row (see Section 6.1.2.1). The pitch returned in *pitch by
cudaMal loc2D() is the width in bytes of the allocation. The intended usage of
pitch is as a separate parameter of the allocation, used to compute addresses within
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the 2D array. Given the row and column of an array element of type T, the address
is computed as
T* pElement = (T*)((char*)BaseAddress + Row * pitch) + Column;

For allocations of 2D arrays, it is recommended that developers consider
performing pitch allocations using cudaMal loc2D(). Due to pitch alignment
restrictions in the hardware, this is especially true if the application will be
performing 2D memory copies between different regions of device memory
(whether linear memory or CUDA arrays).

cudaFree()

cudaError_t cudaFree(void* devPtr);

frees the memory space pointed to by devPtr, which must have been returned by a
previous call to cudaMal loc() or cudaMal loc2D(). Otherwise, or if
cudaFree(devPtr) has already been called before, an error is returned. If
devPtr is 0, no operation is performed. cudaFree() returns
cudaErrorinvalidDevicePointer in case of failure.

cudaMallocArray()

cudaError_t cudaMallocArray(struct cudaArray** array,
const struct cudaChannelFormatDesc* desc,
size_t width, size_t height);

allocates a CUDA array according to the cudaChannelFormatDesc structure
desc and returns a handle to the new CUDA atray in *array.
cudaChannelFormatDesc is described in Section 4.3.4.

cudaFreeArray()

cudaError_t cudaFreeArray(struct cudaArray* array);
frees the CUDA array array.

cudaMemset()

cudaError_t cudaMemset(void* devPtr, int value, size_t count);

fills the first count bytes of the memory area pointed to by devPtr with the
constant byte value value.

cudaMemset2D()

cudaError_t cudaMemset2D(void* dstPtr, size_t pitch,

int value, size_t width, size_t height);
sets to the specified value value a matrix (height rows of width bytes each)
pointed to by dstPtr. pitch is the pitch in the memory area pointed to by
dstPtr.
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cudaMemcpy ()

cudaError_t cudaMemcpy(void* dst, const void* src,

size_t count,

enum cudaMemcpyKind kind);
copies count bytes from the memory atea pointed to by Src to the memory area
pointed to by dst, where kind is one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or
cudaMemcpyDeviceToDevice, and specifies the direction of the copy. The
memoty areas may not ovetlap. Calling cudaMemcpy () with dst and src pointers
that do not match the direction of the copy results in an undefined behavior.

cudaMemcpy2D()

cudaError_t cudaMemcpy2D(void* dst, size_t dpitch,

const void* src, size_t spitch,

size_t width, size_t height,

enum cudaMemcpyKind kind);
copies a matrix (height rows of width bytes each) from the memory area pointed
to by Src to the memory area pointed to by dst, where kKind is one of
cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, and specifies
the direction of the copy. dpitch and spitch are the pitch in the memory areas
pointed to by dst and src. The memory areas may not ovetlap. Calling
cudaMemecpy2D() with dst and src pointers that do not match the direction of
the copy results in an undefined behavior.

cudaMemcpyToArray()

cudaError_t cudaMemcpyToArray(struct cudaArray* dstArray,
size_t dstX, size_t dsty,
const void* src, size t count,
enum cudaMemcpyKind kind);

copies count bytes from the memory area pointed to by Src to the CUDA array
dstArray starting at the upper left corner (dstX, dstY), where kind is one of
cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, and specifies
the direction of the copy.

cudaMemcpy2DToArray()

cudaError_t cudaMemcpy2DToArray(struct cudaArray* dstArray,
size_t dstX, size_t dsty,
const void* src, size_t spitch,
size_t width, size_t height,
enum cudaMemcpyKind kind);
copies a matrix (height rows of width bytes each) from the memory area pointed
to by src to the CUDA array dstArray starting at the upper left corner (dStX,
dstY), where Kind is one of cudaMemcpyHostToHost,

CUDA Programming Guide Version 0.8.2



Appendix B. Runtime API Reference

cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or
cudaMemcpyDeviceToDevice, and specifies the direction of the copy. spitch
is the pitch in the memory area pointed to by Src.

B.2.12 cudaMemcpyFromArray()

cudaError_t cudaMemcpyFromArray(void* dst,

const struct cudaArray* srcArray,

size_t srcX, size_t srcy,

size_t count,

enum cudaMemcpyKind kind);
copies count bytes from the CUDA array SrcArray starting at the upper left
corner (SrcX, srcY) to the memory area pointed to by dst, where kind is one of
cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, and specifies
the direction of the copy.

B.2.13 cudaMemcpy2DFromArray()

cudaError_t cudaMemcpy2DFromArray(void* dst, size_t dpitch,
const struct cudaArray* srcArray,

size_t srcX, size_t srcy,

size_t width, size_t height,

enum cudaMemcpyKind kind);
copies a matrix (height rows of width bytes each) from the CUDA array
SrcArray starting at the upper left corner (SrcX, srcY) to the memory area
pointed to by dst, where kind is one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or
cudaMemcpyDeviceToDevice, and specifies the direction of the copy. dpitch
is the pitch in the memory area pointed to by dst.

B.2.14 cudaMemcpyArrayToArray()

cudaError_t cudaMemcpyArrayToArray(struct cudaArray* dstArray,
size_t dstX, size_t dsty,
const struct cudaArray* srcArray,
size_t srcX, size_t srcy,
size_t count,
enum cudaMemcpyKind kind);

copies count bytes from the CUDA array SrcArray starting at the upper left
corner (SrcX, srcY) to the CUDA array dStArray starting at the upper left
corner (dstX, dstY), where kind is one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or
cudaMemcpyDeviceToDevice, and specifies the direction of the copy.

B.2.15 cudaMemcpy2DArrayToArray()

cudaError_t cudaMemcpy2DArrayToArray(struct cudaArray* dstArray,
size_t dstX, size_t dsty,
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const struct cudaArray* srcArray,

size_t srcX, size_t srcy,

size_t width, size_t height,

enum cudaMemcpyKind kind);
copies a matrix (height rows of width bytes each) from the CUDA atray
SrcArray starting at the upper left corner (SrcX, srcY) to the CUDA array
dstArray starting at the upper left corner (dstX, dstY), where kind is one of
cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, and specifies
the direction of the copy.

cudaMemcpyToSymbol ()

template<class T>
cudaError_t cudaMemcpyToSymbol (const T& symbol, const void* src,
size_t count, size_ t offset = 0);
copies count bytes from the memory area pointed to by Src to the memory area
pointed to by offset bytes from the start of symbol symbol. The memory areas
may not ovetlap. symbol can either be a variable that resides in global memory
space, or it can be a character string, naming a variable that resides in global
memoty space. cudaMemcpyToSymbol () always copies data from the host to the
device.

cudaMemcpyFromSymbol ()

template<class T>
cudaError_t cudaMemcpyFromSymbol (void *dst, const T& symbol,
size_t count, size_ t offset = 0);
copies count bytes from the memory area pointed to by offset bytes from the
start of symbol symbol to the memory area pointed to by dst. The memory areas
may not overlap. symbol can either be a variable that resides in global memory
space, or it can be a character string, naming a variable that resides in global
memory space. cudaMemcpyFromSymbol () always copies data from the device
to the host.

cudaGetSymbolAddress()

template<class T>

cudaError_t cudaGetSymbolAddress(void** devPtr, const T& symbol);
returns in *devPtr the address of symbol symbol on the device. symbol can
either be a variable that resides in device, or it can be a character string, naming a
variable that resides in global memory space. If symbol cannot be found, or if
symbol is not declared in global memory space, *devPtr is unchanged and an
error is returned. cudaGetSymbolAddress() returns
cudakrrorinval idSymbol in case of failure.
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cudaGetSymbolSize()

template<class T>

cudaError_t cudaGetSymbolSize(void** devPtr, const T& symbol);
returns in *devPtr the size of symbol symbol. symbol can either be a vatiable
that resides in device, or it can be a character string, naming a variable that resides in
global memory space. If symbol cannot be found, or if symbol is not declared in
global memory space, *deVvPtr is unchanged and an error is returned.
cudaGetSymbolSize() returns cudakrrorInval idSymbol in case of failure.

Texture Reference Management

Low-Level API

cudaCreateChannelDesc()

struct cudaChannelFormatDesc
cudaCreateChannelDesc(int x, int y, int z, int w,
enum cudaChannelFormatKind f);
returns a channel descriptor with format ¥ and number of bits of each component
X, Y, z, and w. cudaChannelFormatDesc is described in Section 4.3.4.

cudaGetChannelDesc()

cudaError_t cudaGetChannelDesc(struct cudaChannelFormatDesc* desc,
const struct cudaArray* array);

returns in *desc the channel descriptor of the CUDA array array.

cudaGetTextureReference()

cudaError_t cudaGetTextureReference(
struct textureReference** texRef,
const char* symbol);
returns in *texReT the structure associated to the texture reference defined by
symbol symbol.

cudaBindTexture()

cudaError_t cudaBindTexture(const struct textureReference* texRef,
const void* devPtr,
const struct cudaChannelFormatDesc* desc,
size_t size, size_t offset);
binds size bytes of the memory area pointed to by (devPTr + offset) to the
texture reference texRef. desc describes how the memory is interpreted when
fetching values from the texture.

cudaError_t cudaBindTextureToArray(
const struct textureReference* texRef,
const struct cudaArray* array,
const struct cudaChannelFormatDesc* desc);

binds the CUDA array array to the texture reference texRef. desc describes
how the memory is interpreted when fetching values from the texture.
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B.3.1.5 cudaUnbindTexture()

cudaError_t cudaUnbindTexture(
const struct textureReference* texRef);

unbinds the texture bound to texture reference texRef.

B.3.2  High-Level API
B.3.2.1 cudaBindTexture()

template<class T, int dim, enum cudaTextureReadMode readMode>
static __inline__ _ host__ cudaError_t
cudaBindTexture(const struct texture<T, dim, readMode>& texRef,
const void* devPtr,
const struct cudaChannelFormatDescé desc,
size_t size = UINT_MAX,
size_t offset = 0);
binds size bytes of the memory area pointed to by (devPTr + offset) to

texture reference texRef. desc describes how the memory is interpreted when
fetching values from the texture.

template<class T, int dim, enum cudaTextureReadMode readMode>
static __inline__ _ host__ cudaError_t
cudaBindTexture(const struct texture<T, dim, readMode>& texRef,
const void* devPtr,
size_t size = UINT_MAX,
size_t offset = 0);
binds size bytes of the memory area pointed to by (devPTr + offset) to
texture reference texReT. The channel descriptor is inherited from the texture
reference type.

template<class T, int dim, enum cudaTextureReadMode readMode>
static __inline__ _ host__ cudaError_t
cudaBindTexture(const struct texture<T, dim, readMode>& texRef,
const struct cudaArray* cuArray,
const struct cudaChannelFormatDesc& desc);

binds the CUDA array array to texture reference texRef. desc describes how
the memory is interpreted when fetching values from the texture.

template<class T, int dim, enum cudaTextureReadMode readMode>

static __inline__ _ host__ cudaError_t

cudaBindTexture(const struct texture<T, dim, readMode>& texRef,
const struct cudaArray* cuArray);

binds the CUDA array array to texture reference te€xRe¥. The channel descriptor

is inherited from the CUDA array.

B.3.2.2 cudaUnbindTexture()

template<class T, int dim, enum cudaTextureReadMode readMode>
static __inline__ _ host__ cudaError_t
cudaUnbindTexture(const struct texture<T, dim, readMode>& texRef);

unbinds the texture bound to texture reference texRef.
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B.4 Execution Control

B.4.1 cudaConfigureCall()

cudaError_t cudaConfigureCall(dim3 gridDim, dim3 blockDim,

size_t sharedMem = O,

int tokens = 0);
specifies the grid and block dimensions for the device call to be executed similar to
the execution configuration syntax described in Section 4.2.3.
cudaConfigureCall () is stack based. Each call pushes data on top of an
execution stack. This data contains the dimension for the grid and thread blocks,
together with any arguments for the call.

B.4.2 cudalLaunch()

template<class T> cudaError_t cudaLaunch(T entry);

launches the function entry on the device. entry can either be a function that
executes on the device, or it can be a character string, naming a function that
executes on the device. entry must be declared asa __global___ function.
cudaLaunch() must be preceded by a call to cudaConfigureCall () since it
pops the data that was pushed by cudaConfigureCal 1 () from the execution
stack.

B.4.3 cudaSetupArgument()

cudaError_t cudaSetupArgument(void* arg,

size_t count, size_t offset);
template<class T> cudaError_t cudaSetupArgument(T arg,

size_t offset);

pushes count bytes of the argument pointed to by arg at offset bytes from the
start of the parameter passing area, which starts at offset 0. The arguments are
stored in the top of the execution stack. cudaSetupArgument() must be
preceded by a call to cudaConfigureCall().

B.5 OpenGL Interoperability

B.5.1 cudaGLRegisterBufferObject()

cudaError_t cudaGLRegisterBufferObject(GLuint bufferObj);

registers the buffer object of ID bufferObj for access by CUDA. This function
must be called before CUDA can map the buffer object. While it is registered, the
buffer object cannot be used by any OpenGL commands except as a data source for
OpenGL drawing commands.
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cudaGLMapBufferObject()

cudaError_t cudaGLMapBufferObject(void** devPtr,
GLuint bufferObj);

maps the buffer object of ID bufferObj into the address space of CUDA and
returns in *devPtr the base pointer of the resulting mapping.

cudaGLUnmapBufferObject()

cudaError_t cudaGLUnmapBufferObject(GLuint bufferObj);
unmaps the buffer object of ID bufferObj for access by CUDA.

cudaGLUnregisterBufferObject()

cudaError_t cudaGLUnregisterBufferObject(GLuint bufferObj);
unregisters the buffer object of ID bufferObj for access by CUDA.

Direct3D Interoperability

cudabD3D9Begin()

cudaError_t cudaD3D9Begin(IDirect3DDevice9* device);

initializes interoperability with the Direct3D device device. This function must be
called before CUDA can map any objects from device. The application can then
map vertex buffers owned by the Direct3D device until cuD3D9ENd() is called.

cudaD3D9End ()

cudaError_t cudaD3D9End();

concludes interoperability with the Direct3D device previously specified to
cubD3D9Begin().

cudaD3D9RegisterVertexBuffer()

cudaError_t
cudaD3D9RegisterVertexBuffer(IDirect3DVertexBuffer9* VB);

registers the Direct3D vertex buffer VB for access by CUDA.

cudaD3D9MapVertexBuffer()

cudaError_t cudaD3D9MapVertexBuffer(void** devPtr,
unsigned int* size,
IDirect3DVertexBuffer9* VB);
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maps the Direct3D vertex buffer VB into the address space of the current CUDA
context and returns in *devPtr and *size the base pointer and size of the
resulting mapping.

B.6.5 cudaD3D9UnmapVertexBuffer()

cudaError_t cudaD3D9UnmapVertexBuffer(IDirect3DVertexBuffer9* VB);
unmaps the vertex buffer VB for access by CUDA.

B.7 Error Handling

B.7.1 cudaGetLastError()

cudaError_t cudaGetLastError(void);

returns the last error that was returned from any of the runtime calls in the same
host thread and resets it to cudaSuccess.

B.7.2 cudaGetErrorString(Q)

const char* cudaGetErrorString(cudaError_t error);

returns a message string from an error code.
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Initialization

culnit()

CUresult culnit(void);

initializes the driver API and must be called before any other function from the
driver APL If culnit() has not been called, any function from the driver API will
return CUDA_ERROR_NOT_INITIALIZED.

Device Management

cuDeviceGetCount()

CUresult cuDeviceGetCount(int* count);

returns in *count the number of devices currently available for execution.

cuDeviceGet()

CUresult cuDeviceGet(CUdevice* dev, int ordinal);

returns in *devV a device handle given an ordinal in the range
[0, cuDeviceGetCount()-1].

cuDeviceGetName()

CUresult cuDeviceGetName(char* name, int len, CUdevice dev);

returns an ASCII string identifying the device dev in the NULL-terminated string
pointed to by name. Ien specifies the maximum length of the string that may be
returned.
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cuDeviceTotalMem()

CUresult cuDeviceTotalMem(unsigned int* bytes, CUdevice dev);

returns in *bytes the total amount of memory available on the device dev in
bytes.

cuDeviceComputeCapability()

CUresult cuDeviceComputeCapability(int* major, int* minor,
CUdevice dev);

returns in *major and *minor the the major and minor revision numbers of
device dev.

Context Management

cuCtxCreate()

CUresult cuCtxCreate(CUdevice dev);

creates a new context for a device and associates it with the calling thread. The
context is created with a usage count of 1 and the caller of cuCtxCreate() must
call cuCtxDetach() when done using the context. This function fails if a context
is already current to the thread.

cuCtxAttach()

CUresult cuCtxAttach(void);

increments the usage count of the context. This function fails if there is no context
current to the thread.

cuCtxDetach()

CUresult cuCtxDetach(void);

decrements the usage count of the context, and destroys the context if the usage
count goes to 0.

Module Management

cuModulleLoad()

CUresult cuModuleLoad(CUmodule* mod, const char* filename);

takes a file name i lename and loads the corresponding module mod into the
current context. The CUDA driver API does not attempt to lazily allocate the
resources needed by a module; if the memory for functions and data (constant and
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global) needed by the module cannot be allocated, cuModuleLoad () fails. The file
should be a ¢xbin file as output by nvcc (see Section 4.2.5).

cuModulleLoadData()

CUresult cuModulelLoadData(CUmodule* mod, const void* image);

takes a pointer image and loads the corresponding module mod into the current
context. The pointer may be obtained by mapping a cubin file, passing a cubin file as a
text string, or incorporating a e#bin object into the executable resources and using
operation system calls such as Windows’ FindResource() to obtain the pointer.

cuModulleUnload()

CUresult cuModuleUnload(CUmodule mod);

unloads a module mod from the current context.

cuModuleGetFunction()

CUresult cuModuleGetFunction(CUfunction* func,

CUmodule mod, const char* funcname);
returns in *Func the handle of the function of name funcname located in module
mod. If no function of that name exists, cuModuleGetFunction() returns
CUDA_ERROR_NOT__FOUND.

cuModulleGetGlobal )

CUresult cuModuleGetGlobal (CUdeviceptr* devPtr,

unsigned iInt* bytes,

CUmodule mod, const char* globalname);
returns in *devPtr and *bytes the base pointer and size of the global of name
globalname located in module mod. If no variable of that name exists,
cuModuleGetGlobal () returns CUDA_ERROR_NOT_FOUND. Both parameters
ptr and bytes are optional. If one of them is null, it is ignored.

cuModuleGetTexRef()

CUresult cuModuleGetTexRef(CUtexref* texRef,
CUmodule hmod, const char* texrefname);
returns in *texref the handle of the texture reference of name texrefname in

the module mod. If no texture reference of that name exists,
cuModuleGetTexRef() returns CUDA_ERROR_NOT_FOUND.
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Execution Control

cuFuncSetBlockShape()

CUresult cuFuncSetBlockShape(CUfunction func,
unsigned iInt x,
unsigned int vy,
unsigned int z);

specifies the X, Y and Z dimensions of the thread blocks that are created when the
kernel given by func is launched.

cuFuncSetSharedSize()

CUresult cuFuncSetSharedSize(CUfunction func, unsigned int bytes);

sets through bytes the amount of shared memory that will be available to each
thread block when the kernel given by func is launched.

cuParamSetSize()

CUresult cuParamSetSize(CUfunction func, unsigned int numbytes);

sets through numbytes the total size in bytes needed by the function parameters of
function func.

cuParamSeti ()

CUresult cuParamSeti(CUfunction func,
unsigned int offset, unsigned int value);

sets an integer parameter that will be specified the next time the kernel
corresponding to Func will be invoked. offset is a byte offset.

cuParamSetf()

CUresult cuParamSetf(CUfunction func,
unsigned int offset, float value);

sets a floating point parameter that will be specified the next time the kernel
corresponding to Func will be invoked. ofFfset is a byte offset.

cuParamSetv()

CUresult cuParamSetv(CUfunction func,
unsigned int offset, void* ptr,
unsigned int numbytes);

copies an arbitrary amount of data into the parameter space of the kernel
corresponding to func. offset is a byte offset.
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cuParamSetArray()

CUresult cuParamSetArray(CUfunction func,

unsigned int texunit, ClUarray array);
makes the CUDA array array available to a device program as a texture. oFfset
gives the offset of the sampler that the CUDA array is to be bound to. For texture
references whose handles were passed back by cuModuleGetTexReT(), the
special value CU_PARAM_TR_DEFAULT directs the driver to infer this value from
the module.

cuLaunch()

CUresult cuLaunch(CUfunction func);

invokes the kernel func on a 1x1 grid of blocks. The block contains the number of
threads specified by a previous call to cuFuncSetBlockShape().

cuLaunchGrid()

CUresult cuLaunchGrid(CUfunction func,

unsigned int grid_width,

unsigned int grid_height);
invokes the kernel on a grid_width x grid_height grid of blocks. Each
block contains the number of threads specified by a previous call to
cuFuncSetBlockShape().

Memory Management

cuMemAlloc()

CUresult cuMemAlloc(CUdeviceptr* devPtr, unsigned int count);

allocates count bytes of linear memory on the device and returns in *devPtr a
pointer to the allocated memory. The allocated memory is suitably aligned for any
kind of variable. The memory is not cleared. If count is 0, cuMemAl loc() returns
CUDA_ERROR_INVALID_VALUE.

cuMemAlloc2D()

CUresult cuMemAlloc2D(CUdeviceptr* devPtr,

unsigned int* pitch,

unsigned int widthinBytes,

unsigned int height,

unsigned int elementSizeBytes);
allocates at least widthInBytes*height bytes of linear memory on the device
and returns in *devPtr a pointer to the allocated memory. The function may pad
the allocation to ensure that corresponding pointers in any given row will continue
to meet the alighment requirements for coalescing as the address is updated from
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row to row (see Section 60.1.2.1). elementSizeBytes specifies the size of the
largest reads and writes that will be performed on the memory range.
elementSizeBytes may be 4, 8 or 16 (since coalesced memory transactions are
not possible on other data sizes). If elementSizeBytes is smaller than the actual
read/write size of a kernel, the kernel will run correctly, but possibly at reduced
speed. The pitch returned in *pitch by cuMemAl loc2D() is the width in bytes of
the allocation. The intended usage of pitch is as a separate parameter of the
allocation, used to compute addresses within the 2D array. Given the row and
column of an array element of type T, the address is computed as

T* pElement = (T*)((char*)BaseAddress + Row * Pitch) + Column;

The pitch returned by cuMemAl loc2D() is guaranteed to work with
cuMemcpy2D() under all circumstances. For allocations of 2D arrays, it is
recommended that developers consider performing pitch allocations using
cuMemAl 1oc2D(). Due to pitch alignment restrictions in the hardware, this is
especially true if the application will be performing 2D memory copies between
different regions of device memory (whether linear memory or CUDA arrays).

cuMemFree()

CUresult cuMemFree(CUdeviceptr devPtr);

frees the memory space pointed to by devPtr, which must have been returned by a
previous call to cudaMal loc() or cudaMalloc2D().

cuMemAl locSystem()

CUresult cuMemAllocSystem(void** sysPtr, unsigned int count);

allocates count bytes of system memory that is page-locked and accessible to the
device. The driver tracks the virtual memory ranges allocated with this function and
automatically accelerates calls to functions such as cuMemcpy (). Since the memory
can be accessed directly by the device, it can be read or written with much higher
bandwidth than pageable system memory obtained with functions such as
malloc(). Allocating excessive amounts of memory with

cuMemAl locSystem() may degrade system performance, since it reduces the
amount of memory available to the system for paging. As a result, this function is
best used sparingly to allocate staging areas for data exchange between host and
device.

cuMemFreeSystem()

CUresult cuMemFreeSystem(void* sysPtr);

frees the memory space pointed to by sSysPtr, which must have been returned by a
previous call to cuMemAl locSystem().

cuMemGetAddressRange()

CUresult cuMemGetAddressRange(CUdeviceptr* basePtr,
unsigned int* size,
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CUdeviceptr devPtr);
returns the base address in *basePtr and size and *size of the allocation by
cuMemAlloc() or cuMemAl loc2D() that contains the input pointer devPtr.
Both parameters basePtr and size atre optional. If one of them is null, it is
ignored.

C.6.7 cuArrayCreate()

CUresult cuArrayCreate(CUarray* array,

const CUDA_ARRAY_DESCRIPTOR* desc);
creates a CUDA array according to the CUDA_ARRAY_DESCRIPTOR structure
desc and returns a handle to the new CUDA array in *array. The
CUDA_ARRAY_DESCRIPTOR structure is defined as such:

typedef struct {
unsigned int Width;
unsigned int Height;
CUarray_format Format;
unsigned int NumPackedComponents;
} CUDA_ARRAY_DESCRIPTOR;

where:

Width and Height are the width and height of the CUDA array (in elements);
NumPackedComponents specifies the number of packed components per
CUDA array element.; it may be 1, 2 or 4;

Format specifies the format of the elements; CUarray_format is defined as
such:

typedef enum CUarray_format_enum {

CU_AD_FORMAT_UNSIGNED_INT8 = 0Ox01,
CU_AD_FORMAT_UNSIGNED_INT16 = 0x02,
CU_AD_FORMAT_UNSIGNED_INT32 = 0x03,
CU_AD_FORMAT_SIGNED_INT8 = Ox08,
CU_AD_FORMAT_SIGNED_INT16 = Ox09,
CU_AD_FORMAT_SIGNED_INT32 = OxOa,
CU_AD_FORMAT_HALF = 0x10,
CU_AD_FORMAT_FLOAT = 0x20

} CUarray_format;

Here are examples of CUDA array descriptions:

Description for a CUDA array of 2048 floats:
CUDA_ARRAY_DESCRIPTOR desc;
desc.Format = CU_AD_FORMAT_FLOAT;
desc.NumPackedComponents = 1;
desc.Width = 2048;

desc.Height = 1;

Description for a 64X64 CUDA array of floats:
CUDA_ARRAY_DESCRIPTOR desc;
desc.Format = CU_AD_FORMAT_FLOAT;
desc.NumPackedComponents = 1;
desc.Width = 64;

desc.Height = 64;

Description for a widthxheight CUDA atray of 64-bit, 4x16-bit float16's:
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CUDA_ARRAY_DESCRIPTOR desc;

desc.FormatFlags = CU_AD_FORMAT_HALF;
desc.NumPackedComponents = 4;

desc.Width = width;

desc.Height = height;

Description for a widthxheight CUDA array of 16-bit elements, each of
which is two 8-bit unsigned chars:
CUDA_ARRAY_DESCRIPTOR arrayDesc;
desc.FormatFlags = CU_AD_FORMAT_UNSIGNED_INTS;
desc.NumPackedComponents = 2;

desc.Width = width;

desc.Height = height;

C.6.8 cuArrayGetDescriptor()

CUresult cuArrayGetDescriptor(CUDA_ARRAY DESCRIPTOR* arrayDesc,
Clarray array);

returns in *arrayDesc the descriptor that was used to create the CUDA array

array. It is useful for subroutines that have been passed a CUDA array, but need

to know the CUDA array parameters for validation or other purposes.

C.6.9 cuArrayDestroy()

CUresult cuArrayDestroy(CUarray array);
destroys the CUDA array array.

C.6.10 cuMemset()

CUresult cuMemsetD8(CUdeviceptr dstDevice,

unsigned char value, unsigned int count);
CUresult cuMemsetD16(CUdeviceptr dstDevice,

unsigned short value, unsigned int count);
CUresult cuMemsetD32(CUdeviceptr dstDevice,

unsigned int value, unsigned int count);
sets the memory range of count 8-, 16-, or 32-bit values to the specified value
value.

C.6.11 cuMemcpyStoD()

CUresult cuMemcpyStoD(CUdeviceptr dstDevPtr,

const void *srcHostPtr,

unsigned int count);
copies from host memory to device memory. dstDevPtr and srcHostPtr
specify the base addresses of the destination and source, respectively. count
specifies the number of bytes to copy.
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C.6.12 cuMemcpyDtoS()

CUresult cuMemcpyDtoS(void* dstHostPtr,

CUdeviceptr srcDevPtr,

unsigned int count);
copies from device to host memory. dstHostPtr and srcDevPtr specity the
base addresses of the source and destination, respectively. count specifies the
number of bytes to copy.

C.6.13 cuMemcpyDtoD()

CUresult cuMemcpyDtoD(CUdeviceptr dstDevPtr,

CUdeviceptr srcDevPtr,

unsigned int count);
copies from device memory to device memory. dstDevice and srcDevPtr are
the base pointers of the destination and source, respectively. count specifies the
number of bytes to copy.

C.6.14 cuMemcpyDtoA()

CUresult cuMemcpyDtoA(CUarray dstArray, unsigned int dstlndex,
CUdeviceptr srcDevPtr,
unsigned int count);
copies from device memory to a 1D CUDA array. dstArray and dstindex
specity the CUDA array handle and starting index of the destination data.
srcDevPtr specifies the base pointer of the source. count specifies the number
of bytes to copy.

C.6.15 cuMemcpyAtoD()

CUresult cuMemcpyAtoD(CUdeviceptr dstDevPtr,
CUarray srcArray, unsigned int srclndex,
unsigned int count);
copies from a 1D CUDA array to device memory. dstDevPtr specifies the base
pointer of the destination and must be naturally aligned with the CUDA array
clements. SrcArray and srclndex specify the CUDA array handle and the index
(in array elements) of the array element where the copy is to begin. count specifies
the number of bytes to copy and must be evenly divisible by the array element size.

C.6.16 cuMemcpyAtoS()

CUresult cuMemcpyAtoS(void* dstHostPtr,
CUarray srcArray, unsigned int srclndex,
unsigned int count);
copies from a 1D CUDA array to host memory. dStHOStPtr specifies the base
pointer of the destination. SrcArray and srclndex specify the CUDA array
handle and starting index of the source data. count specifies the number of bytes
to copy.
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C.6.17 cuMemcpyStoA()

CUresult cuMemcpyStoA(CUarray dstArray, unsigned int dstlndex,
const void *srcHostPtr,
unsigned int count);
copies from host memory to a 1D CUDA array. dstArray and dstlndex specity
the CUDA array handle and starting index of the destination data. sSrcHostPtr
specify the base addresse of the source. count specifies the number of bytes to

copy.

C.6.18 cuMemcpyAtoA()

CUresult cuMemcpyAtoA(CUarray dstArray, unsigned int dstlndex,
CUarray srcArray, unsigned int srclndex,
unsigned int count);

copies from one 1D CUDA array to another. dstArray and srcArray specify
the handles of the destination and source CUDA arrays for the copy, respectively.
dstlndex and srclndex specify the destination and source indices into the
CUDA atray. These values are in the range [0, Width-1] for the CUDA atray;
they are not byte offsets. count is the number of bytes to be copied. The size of
the elements in the CUDA arrays need not be the same format, but the elements
must be the same size; and count must be evenly divisible by that size.

C.6.19 cuMemcpy2D()

CUresult cuMemcpy2D(const CUDA_MEMCPY2D* copyParam);
CUresult cuMemcpy2DUnaligned(const CUDA_ MEMCPY2D* copyParam);

perform a 2D memory copy according to the parameters specified in copyParam.
The CUDA_MEMCPY2D structure is defined as such:

typedef struct CUDA_MEMCPY2D_ st {

unsigned int srcXInBytes, srcY;
CUmemorytype srcMemoryType;
const void *srcSystem;
CUdeviceptr srcDevice;
CUarray srcArray;
unsigned iInt srcPitch;

unsigned int dstXInBytes, dstY;
CUmemorytype dstMemoryType;
void *dstSystem;
CUdeviceptr dstDevice;
CUarray dstArray;
unsigned int dstPitch;

unsigned int WidthlnBytes;
unsigned int Height;
} CUDA_MEMCPY2D;

where:
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srcMemoryType and dstMemoryType specify the type of memory of the
source and destination, respectively; Cumemorytype_enum is defined as such:

typedef enum CUmemorytype_enum {
CU_MEMORYTYPE_SYSTEM = 0xO01,
CU_MEMORYTYPE_DEVICE = 0x02,
CU_MEMORYTYPE_ARRAY = 0x03

} CUmemorytype;

If srcMemoryType is CU_MEMORYTYPE_SYSTEM, srcSystem and
srcPitch specify the (system) base address of the source data and the bytes per
row to apply. SrcArray is ignored.

If srcMemoryType is CU_MEMORYTYPE_DEVICE, srcDevice and
srcPitch specify the (device) base address of the source data and the bytes per
row to apply. SrcArray is ignored.

If srcMemoryType is CU_MEMORYTYPE_ARRAY, srcArray specifies the
handle of the source data. SrcSystem, srcDevice and srcPitch are
ignored.

If dstMemoryType is CU_MEMORYTYPE_SYSTEM, dstSystem and
dstPitch specify the (system) base address of the destination data and the
bytes per row to apply. dstArray is ignored.

If dstMemoryType is CU_MEMORYTYPE_DEVICE, dstDevice and
dstPitch specify the (device) base address of the destination data and the
bytes per row to apply. dstArray is ignored.

If dstMemoryType is CU_MEMORYTYPE_ARRAY, dstArray specifies the
handle of the destination data. dstSystem, dstDevice and dstPitch are
ignored.

srcXInBytes and SrcY specify the base address of the source data for the
copy.

For system pointers, the starting address is

void* StartSystem =
(void*) ((char*)srcSystem+srcY*srcPitch + srcXInBytes);

For device pointers, the starting address is

CUdeviceptr StartSystem = srcDevice+srcY*srcPitch+srcXInBytes;
For CUDA arrays, sSrcXInBytes must be evenly divisible by the array element
size.

dstXInBytes and dstY specify the base address of the destination data for the
copy.

For system pointers, the base address is

void* dstStart =
(void*) ((char*)dstSystem+dstY*dstPitch + dstXInBytes);

For device pointers, the starting address is
CUdeviceptr dstStart = dstDevice+dstY*dstPitch+dstXInBytes;

For CUDA arrays, dstXInBytes must be evenly divisible by the array element
size.
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WidthInBytes and Height specify the width (in bytes) and height of the 2D

copy being performed. Any pitches must be greater than or equal to

WidthinBytes.
cuMemAlloc2D() passes back pitches that always work with cuMemcpy2D(). On
intra-device memory copies (device<>device, CUDA array¢<>device, CUDA array<>
CUDA array), cuMemcpy2D() may fail for pitches not computed by
cuMemAlloc2D(). cuMemcpy2DUnal igned() does not have this restriction,
but may run significantly slower in the cases where cuMemcpy2D() would have
returned an error code.

Texture Reference Management

cuModuleGetTexRef()

CUresult cuModuleGetTexRef(CUtexref* texRef,

CUmodule mod, const char* texrefname);
returns in *texReTf the handle of the texture reference of name texrefname that
was created when the module mod was loaded. This texture reference handle should
not be destroyed, since it will be destroyed when the module is unloaded.

cuTexRefCreate()

CUresult cuTexRefCreate(CUtexref* texRef);

creates a texture reference and returns its handle in *texRef. Once created, the
application must call cuTexRefSetArray() or cuTexRefSetAddress() to
associate the reference with allocated memory. Other texture reference functions
are used to specify the format and interpretation (addressing, filtering, etc.) to be
used when the memory is read through this texture reference. To associate the
texture reference with a texture ordinal for a given function, the application should
call cuParamSetTexRef().

cuTexRefDestroy()

CUresult cuTexRefDestroy(CUtexref texRef);

destroys the texture reference.

cuTexRefSetArray()

CUresult cuTexRefSetArray(CUtexref texRef,

CUarray array,

unsigned int flags);
binds the CUDA array array to the texture reference texRe¥. Any previous
address or CUDA array state associated with the texture reference is superseded by
this function. Flags must be set to CU_TRSA_OVERRIDE_FORMAT.
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cuTexRefSetAddress()

CUresult cuTexRefSetAddress(CUtexref texRef,
CUdeviceptr base, CUdeviceptr devPtr,
unsigned int bytes);
binds a linear address range to the texture reference texRef. Any previous address
or CUDA array state associated with the texture reference is superseded by this
function.

cuTexRefSetFormat()

CUresult cuTexRefSetFormat(CUtexref texRef,
CUarray_format format,
unsigned int numPackedComponents);

specifies the format of the data to be read by the texture reference texReT.
format and numPackedComponents are exactly analogous to the Format and
NumPackedComponents members of the CUDA_ARRAY_DESCRIPTOR structure:
They specity the format of each component and the number of components per
array element.

cuTexRefSetAddressMode()

CUresult cuTexRefSetAddressMode(CUtexref texRef,

unsigned int dim,

CUaddress_mode mode);
specifies the addressing mode mode for the given dimension of the texture
reference texRef. If dim is zero, the addressing mode is applied to the first
parameter of the texfetch()function used to fetch from the texture; if dimis 1,
the second, and so on. CUaddress_mode is defined as such:

typedef enum CUaddress_mode_enum {
CU_TR_ADDRESS_MODE_WRAP = O,
CU_TR_ADDRESS_MODE_CLAMP = 1,
CU_TR_ADDRESS_MODE_MIRROR = 2,
} CUaddress_mode;

Note that this call has no effect if texReT is bound to linear memory.

cuTexRefSetFilterMode()

CUresult cuTexRefSetFilterMode(CUtexref texRef,
CUfilter_mode mode);

specifies the filtering mode mode to be used when reading memory through the
texture reference texReF. CUFilter_mode_enum is defined as such:
typedef enum CUFilter_mode_enum {
CU_TR_FILTER_MODE_POINT = 0,

CU_TR_FILTER_MODE_LINEAR = 1
} CUFilter_mode;

Note that this call has no effect if texRe¥ is bound to linear memory.
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cuTexRefSetFlags()

CUresult cuTexRefSetFlags(CUtexref texRef, unsigned int Flags);
specifies optional flags to control the behavior of data returned through the texture
reference. The valid flags are:
CU_TRSF_READ_AS_INTEGER, which suppresses the default behavior of
having the texture promote integer data to floating point data in the range [0, 1];

CU_TRSF_NORMALIZED_COORDINATES, which suppresses the default
behavior of having the texture coordinates range from [0, Dim) where Dim is
the width or height of the CUDA array. Instead, the texture coordinates [0, 1.0)
reference the entire breadth of the array dimension.

cuTexRefGetAddress()

CUresult cuTexRefGetAddress(CUdeviceptr* baseAddress,
CUdeviceptr* pdptr, CUtexref texRef);

returns in *baseAddress the base address bound to the texture reference
texRef, or returns CUDA_ERROR_INVALID_VALUE if the texture reference is not
bound to any device memory range.

cuTexRefGetArray()

CUresult cuTexRefGetArray(CUarray* array, CUtexref texRef);

returns in *array the CUDA array bound by the texture reference texRef, or
returns CUDA_ERROR_INVALID_VALUE if the texture reference is not bound to
any CUDA array.

cuTexRefGetAddressMode()

CUresult cuTexRefGetAddressMode(CUaddress_mode* mode,
CUtexref texRef,
unsigned int dim);

returns in *mode the addressing mode corresponding to the dimension dim of the
texture reference texRetf. Currently the only valid values for dim are 0 and 1.

cuTexRefGetFilterMode()

CUresult cuTexRefGetFilterMode(CUfilter_mode* mode,
CUtexref texRef);

returns in *mode the filtering mode of the texture reference texRef.

cuTexRefGetFormat()

CUresult cuTexRefGetFormat(CUarray_format* format,
unsigned int* numPackedComponents,
CUtexref texRef);
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returns in *format and *numPackedComponents the format and number of
components of the CUDA array bound to the texture reference texRef. If
format or numPackedComponents is null, it will be ignored.

cuTexRefGetFlags()

CUresult cuTexRefGetFlags(unsigned int* flags, CUtexref texRef);
returns in *Flags the flags of the texture reference texRef.

OpenGL Interoperability

cuGLInit()

CUresult cuGLInit(void);

initializes OpenGL interoperability. It must be called before performing any other
OpenGL interoperability operations. It may fail if the needed OpenGL driver
facilities are not available.

cuGLRegisterBufferObject()

CUresult cuGLRegisterBufferObject(GLuint bufferObj);

registers the buffer object of ID bufferObj for access by CUDA. This function
must be called before CUDA can map the buffer object. While it is registered, the
buffer object cannot be used by any OpenGL commands except as a data source for
OpenGL drawing commands.

cuGLMapBufferObject()

CUresult cuGLMapBufferObject(CUdeviceptr* devPtr,
unsigned iInt* size,
GLuint bufferObj);

maps the buffer object of ID bufferObj into the address space of the current
CUDA context and returns in *devPtr and *size the base pointer and size of the
resulting mapping.

cuGLUnmapBufferObject()

CUresult cuGLUnmapBufferObject(GLuint bufferObj);
unmaps the buffer object of ID bufferObj for access by CUDA.

cuGLUnregisterBufferObject()

CUresult cuGLUnregisterBufferObject(GLuint bufferObj);
unregisters the buffer object of ID bufferObj for access by CUDA.
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C.9 Direct3D Interoperability

C.9.1 cuD3D9Begin()

CUresult cuD3D9Begin(IDirect3DDevice9* device);

initializes interoperability with the Direct3D device device. This function must be
called before CUDA can map any objects from device. The application can then
map vertex buffers owned by the Direct3D device until cuD3D9ENd() is called.

C.9.2  cuD3D9ENd()

CUresult cuD3D9ENd();

concludes interoperability with the Direct3D device previously specified to
cubD3D9Begin().

C.9.3 cuD3D9RegisterVertexBuffer()

CUresult cuD3D9RegisterVertexBuffer(IDirect3DVertexBuffer9* VB);
registers the Direct3D vertex buffer VB for access by CUDA.

C.9.4 cuD3D9MapVertexBuffer()

CUresult cuD3D9MapVertexBuffer(CUdeviceptr* devPtr,
unsigned int* size,
IDirect3DVertexBuffer9* VB);

maps the Direct3D vertex buffer VB into the address space of the current CUDA
context and returns in *devPtr and *size the base pointer and size of the
resulting mapping.

C.9.5 cubD3D9UnmapVertexBuffer()

CUresult cuD3D9UnmapVertexBuffer(IDirect3DVertexBuffer9* VB);
unmaps the vertex buffer VB for access by CUDA.
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