n\IIDIA

NVIDIA CUDA
Compute Unified
Device Architecture

Programming Guide

Version 0.8.2

4/24/2007

CUDA Programming Guide Version 0.8.2

Table of Contents

Chapter 1. Introduction t0 CUDA e 1
1.1 The Graphics Processor Unit as a Data-Parallel Computing Device.................... 1
1.2 CUDA: A New Architecture for Computing on the GPUcc.ccoiiiiiiiiiiiiaennne, 3
1.3 DOCUMENT'S STIUCTUIEoienieeeite ettt e e e e e e e e e eees 6

Chapter 2. Programming MOdEl..........cooiiniiiiiiii e 7
2.1 A Highly Multithreaded COPIrOCESSOTuiiiuieieeeie e e e e e eeaes 7
2.2 Thread BatChiNgc..u i 7

2.2.1 Thread BIOCKoiiiiiiiiie e 7
2.2.2 Grid Of Thread BIOCKS.......ccuuiieiiieie ettt 8
2.3 MEMOIY MOUEI ...t 10

Chapter 3. Hardware Implementationccocooiiiiiiiii e, 13
3.1 A Set of SIMD Multiprocessors with On-Chip Shared Memory 13
3.2 EXECULION MOGEIt ees 14

Chapter 4. Application Programming Interfacecccoooiiiiiiiiiiiiiiineenn, 17
4.1 An Extension to the C Programming Languageccceveuieuieineeeenneiieeneeeennns 17
4.2 Language EXTENSIONSuuieiieeete ettt ettt e e e e 17

4.2.1 Function Type QUAlIfIers........couiiieiiiii i 18
4.2.2 Variable Type QUAlIfIErscccuiiiiiiiii e 19
4.2.3 Execution Configurationcooeiiiiiiiei e 20
4.2.4 Built-in Variables. ... 21
4.2.5 Compilation With NVCCiiii e 21
4.3 Common RUNtimMe COMPONENTt e e 22
4.3.1 BUIIt-IN VECION TYPES ceuiiiteiii ettt et et e e e e e e eens 22
4.3.2 Mathematical FUNCLIONS............iiiiiiiiii e 22
4.3.3 TIME FUNCHION ...iitiiiiee et e e 23
I AU (=T 1Y/ o1 TSP 23
4.4 Device RUNtime COMPONENTccuuiiii e e e e 24
441 Mathematical FUNCLIONS.........c.uuiiiiiiiiiee e 24

CUDA Programming Guide Version 0.8.2 iii

4.4.2 Synchronization FUNCLION ... e 25

4.4.3 Type Casting FUNCLIONSc.uiieiiieeei e 25
4.4.4 Texture FUNCHIONSiiiiiii ettt 25
4.5 Host RuNtime COMPONENTiiii e e e e e e e e 26
45.1 COMMON CONCEPES . et et e e e e 26
4.5.2 RUNEME APL ... et 27
4.5.3 DIIVEE AP L. 32
Chapter 5. GeForce 8800 Series and Quadro FX 5600/4600
Technical SPeCITICATIONcuiii e e 39
5.1 General SPeCIfiCatiONveuiieiiiiei e 39
5.2 Floating-Point Standardoooeiiiiiii e 40
Chapter 6. Performance GUIdeliNeS.........c.iieiiiiiiii e 43
6.1 INStruction PerformManCecooeuiiiriiiiii e 43
6.1.1 Instruction Throughput e 43
6.1.2 Memory BandwWidth ... 45
6.2 Number of Threads per BIOCK........ccouuiiiiiiiie e 55
6.3 Data Transfer between HOSt and DEeVICEccevuiiiiiiiiiiiieeiieeeie e 56
Chapter 7. Example of Matrix Multiplicationccoocoiiiiiiiiiieeas 57
T.1 OVEIVIBW ..ttt ettt ettt et e et e et e e e e e e e n e 57
2~ 1o 18] ot 00 To (= Y T o 59
7.3 Source Code Walkthrough........ ... 61
730 MUBQD oottt ettt ettt ettt 61
7.3.2 MUBAQ) i 61
Appendix A. MathematiCs FUNCLIONS...........co.iiiiiiiii e 63
Appendix B. Runtime APl ReferencCeccooiiiiiiiii e 67
B.1 Device ManagEmMENTccuuiiiiiiii e e e e e e e e e 67
B.1.1 cudaGetDeVviCeCoUuNT() ..ocoii i e 67
B.1.2 cudaGetDeVvICePropertieS() .cooiiiiiiieiieeee e 67
B.1.3 cudaChoOSEDEVIECE() -iiuuiiiiiiiei ettt 68
B.1.4 CUASETDEVICE() cuiiiiiiiiiiii e 68
B.1.5 CUJAGETDEVECE() - iiiruiiiiieeii ettt eans 68
B.2 Memory Managementciuie i e e e et et e e 68
B.2.1 cUdAMATTOC() -iiiiiiiiie e 68

iv CUDA Programming Guide Version 0.8.2

B.2.2 cuUdaMal TOC2D () .iiuiiiiii it e e 68

B.2.3 CUAAFIEE() ciiiiii i 69
B.2.4 cudaMal FoCAITaAY () - i 69
B.2.5 CUAAFIEEANTAY () «iieii it e 69
B.2.6 CUAMEMSET() .. ieeuiiitieeiii ettt ettt e e e e e 69
B.2.7 cUdAMEMSETEZ2D () -iiuiiiiiii it e 69
7228 S T o1 (o F= 11 [=T 11 0] o) V4 () TP 70
B.2.9 cudaMemCPY2D () cieuiinieiieiii e 70
B.2.10 cudaMemCPYTOANTAY () .ccuiieiieii i e e e ees 70
B.2.11 cudaMemCPY2DTOAFNTAY () - ceeuuiiieieiieeei et 70
B.2.12 cudaMemCPpYFromAFrray () ..o 71
B.2.13 cudaMemcpy2DFromAIrray () ..coccoeeeuieeeeiii et 71
B.2.14 cudaMemcCpYArrayTOArTaY () .o 71
B.2.15 cudaMemcpy2DArrayTOANIraY () «.cccoeeiiiieii e e e 71
B.2.16 cudaMemcpyTOSYMBOE() covuiiiniiiiie e 72
B.2.17 cudaMemcpyFromSymbol () . .coooeiiii e 72
B.2.18 cudaGetSymbolAdAressS() oo 72
B.2.19 cudaGetSymboISTZE() .o 73
B.3 Texture Reference Management...... ..o 73
B.3.1 LOW-LEVEI AP ..o e 73
B.3.1.1 cudaCreateChannelDesC () ..c.ccoviiiiiiiiiii i, 73
B.3.1.2 cudaGetChannNelDeSC () . ..o iiiuu i 73
B.3.1.3 cudaGetTextureReference()...cocovviiiiiiiii i, 73
B.3.1.4 CcudaBINATEXTUFrE () i 73
B.3.1.5 cudaunbindTeXture () ..o 74
B.3.2 HIgh-LeVel AP e 74
B.3.2.1 CUdaBINATEXTUFE () cun e 74
B.3.2.2 cudalnbindTeXture (). oo 74
B.4 EXECULION CONIOl.....cceuniiei it e e 75
B.4.1 cudaConfigureCall() ..o, 75
B.4.2 cUdALAUNCRN() .iiiiiiiiie e 75
B.4.3 cudaSetupArgument() ..o 75

CUDA Programming Guide Version 0.8.2 v

B.5 OpenGL Interoperability.........cccoeeiiiiiiii e e 75

B.5.1 cudaGLRegisterBufferObject() ...cccoiriiiiiiiiii e 75
B.5.2 cudaGLMapBufferObJecCt() ...cooiiiiiiiii e 76
B.5.3 cudaGLUNmapBufTerObJeCt() . .cooviuiieiiiieiiieeeeeee e 76
B.5.4 cudaGLUnregisterBufferObject()cc.ccoimiiiiiiiiiiiiiieean 76
B.6 Direct3D Interoperability...........cooeuiiiiiiii e 76
B.6.1 cudaD3DOBeguiN() «uoicuiiiiiiiii et 76
B.6.2 CcUdAD3DIENA() .uiiuiiiiieii e 76
B.6.3 cudaD3D9RegisterVertexBuffer()coooiiiiiiiiiiiiiieeei e, 76
B.6.4 cudaD3D9MapVertexBuffer() ... 76
B.6.5 cudaD3D9UnmapVertexBuffer()cocooviiiiiiiiiii e, 77

= T A =1 (o] g o = g T |1V 77
B.7.1 cudaGetLaSTEIrror() .ot 77
B.7.2 cudaGetErrorStrinNg() - oo 77
Appendix C. Driver APl ReferencCecouviiiiiii e, 79
O3 R [011 1= 112 U [0 o I PP PPN 79
(O30 0 R o U 1 F a1 I o () TP 79
C.2 Device ManagemMENTc.uviuiie i e e e e e e e e 79
C.2.1 cUDEVICEGETCOUNTE() iieruiiii ittt eaas 79
O3 o1 U [DIV ot =1 €= o () 79
C.2.3 cUDEVICEGEENAME() . iivniiiiiiii e e e e 79
C.2.4 cuDeviceTotalMem() .o 80
C.2.5 cuDeviceComputeCapabi Tty () ccooiiiiiiiiiiiii e 80
C.3 Context ManagemENT.........ccuiiuiei ettt 80
(O3 I N 01U 03 (O of=T- | =T (@ TN 80
C.3.2 CUCEXATTEACH() ciiiiiiiii e 80
C.3.3 CUCEXDETACKH() ciiiiiiiii e 80
C.4 Module ManagemMENTcceuiiieei e e e e e e et e e e e e eanaas 80
C.41 cuModUIELoad() ..ociii i 80
C.4.2 cuModuleLoadData()ieeeuueieieieie e 81
C.4.3 cuModuleUnload () .o 81
C.4.4 cuModuleGetFUNCEION() .iiiniiiiii e 81

vi CUDA Programming Guide Version 0.8.2

C.45 cuModuleGetGlobal () .cooiiiiii i 81

C.4.6 cuModuleGetTEXRET (D) . iiiiiii i 81
C.5 EXECULION CONIOl ... eeeiii e e e 82
C.5.1 cuFuncSetBIOoCKShape() . ccuiiiiiiiiiieee e 82
C.5.2 cuFuncSetSharedSIZe() . oo 82
C.5.3 CUPAramSetSHEZE() coiiiiiiii i 82
C.5.4 CUPArAMSEEI () cieuiiiiiiiiiii ettt e e 82
C.55 CUPAramSeET () cuoiniiiiii i 82
C.5.6 CUPAramMSEEV () -oiiuiiiiii i 82
C.5.7 CUPAramSEEANTAY () - ecuiii it e e 83
C.5.8 CULAUNCN(D it e e 83
(O I o101 Ir- 101 ¢ (o1 o €] ol Ko [@) T PP PP 83
C.6 Memory ManagemENT oot e e e e 83
C.6.1 CUMEMATTOC() - ieiiiiiii et eans 83
C.6.2 CUMEMALTOCZ2D() ciiiiiii it e 83
O G T B o U1 1= 1| r =T () TN 84
C.6.4 CUMEMATTOCSYSTEM() tiuniiiiii i e e 84
C.6.5 CUMEMFIEeSYSTEM() i 84
C.6.6 cuMemGetAddresSSRANGE() ... iiieuniiiiii et 84
(NI A o U Y g or=\ V0 g/=F- 1 =T () TR 85
C.6.8 CUArrayGetDesCriptor() .o 86
C.6.9 CUAKTAYDESTEIOY() ciiuniiiiiiiiii ettt 86
C.6.10 CUMEMSET() «ieniiniii ittt e e e e e e e e e e 86
C.6.11 CUMEMCPYSTEOD() couiiiniiiiieii et e e e 86
C.6.12 CUMEMCPYDEOS() teuieniiniaii et e e e e e ean e 87
C.6.13 CUMEMCPYDEOD() iviiiniin i 87
C.6.14 CUMEMCPYDEOA() -uuieeniiite ettt ettt e e e 87
C.6.15 CUMEMCPYATOD () teuiiniiiiieiii et e e e e e 87
C.6.16 CUMEMCPYATOS() touiiiniiiiieii ettt e e e e e e 87
C.6.17 CUMEMCPYSEOA(D -uuietniiite ettt ettt et e e 88
C.6.18 CUMEMCPYATOA() ciriiii it e e 88

CUDA Programming Guide Version 0.8.2 vii

viii

O 00 Ke I o U 11V T=T1 1% o))V 224 D T () T 88
C.7 Texture Reference Management.........c.ccuiviuiiiiiiiii i 90
C.7.1 cuModuleGetTexXReT () . 90
C.7.2 CUTEXRETCIEATE() «ivuiiiiii ettt e 90
C.7.3 CUTEXRETDESTEIOY() - icuiiiniiiieia et e e e 90
C.7.4 CUTEXRETSETANTAY () coviiiiiii it 90
C.7.5 cCUTEXRETSETAAAIrESS() - iiiuuiiiiiiieii et 91
C.7.6 cuTexXRefSetFormat()ccociiiiiiie e 91
C.7.7 cuTexReFSetAddressMode() ...ooiviiiiiiiiiiii e 91
C.7.8 cuTexReTSetFilterMode () . oo 91
C.7.9 cUTeXReTSEtFIagS() oot e 92
C.7.10 cUTEXRETGCETAAAIESS() - iiiuueiii ettt 92
C.7.11 CUTEXRETGETANTAY () ciuieiniii et e e e 92
C.7.12 cuTexRefGetAddressMOode() ...cooiviiiiiiiiiii e 92
C.7.13 cuTexReTGetFIITErMode() .. oo 92
C.7.14 cuTexXRefGetFormat() ..coccoviii i e 92
C.7.15 cUTEXRETGETFIAGS() ciiiiiiiii i 93
C.8 OpenGL Interoperabilityccciieiii e 93
C.8.1 CUGLINTE(Q) tiiuniiiiiiiiei ettt e eeans 93
C.8.2 cuGLRegisterBufferObJect() ..cooiiiiiiiiiiieeee e 93
C.8.3 cUGLMapBUFFerObJecCt() .occooiiiii i 93
C.8.4 cuGLUNMapBUuTFerObJeCt() . .ccooiriiiiieiie e 93
C.8.5 cuGLUnregisterBufferObject() ...ccccooiiiiiiiiii e, 93
C.9 Direct3D Interoperability.........cooeeuiiiiiiiieie e 94
C.9.1 CUD3DIBEGEN() cuiiiiiiiii i et 94
C.9.2 CUDSBDOIENU() -euierunieitneiii e ettt ettt e e e e e e e e e eeans 94
C.9.3 cuD3D9RegisterVertexBuffer() ...coccooiiiiiiiii e 94
C.9.4 cuD3DIMapVertexBuffer() ..o 94
C.9.5 cuD3D9UNmapVertexBuTFer()ccooiiiiiiie e 94
CUDA Programming Guide Version 0.8.2

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 7-1.

List of Figures

Floating-Point Operations per Second for the CPU and GPU..................... 1
The GPU Devotes More Transistors to Data Processingccccovevvveneennenn. 2
Compute Unified Device Architecture Block Diagramcccccoeveeeennnenn. 3
The Gather and Scatter Memory OPErationsovvevueeeunneenineeenneeennnn 4
Shared Memory Brings Data Closer to the ALUSccccvviiviiiiiiiieciee, 5
Thread BatChingcoou i 9
MEMOIY MOEL ... e 11
Hardware MOElcoooiuiiiiiiii e 14

Examples of Shared Memory Access Patterns Without any Bank Conflict 51
Examples of Shared Memory Access Patterns Without any Bank Conflict 52
Examples of Shared Memory Access Patterns With Bank Conflicts........... 53
Matrix MUIIPHCAtIONo e 58

CUDA Programming Guide Version 0.8.2 iX

1.1

Chapter 1.
Introduction to CUDA

The Graphics Processor Unit as a
Data-Parallel Computing Device

In a matter of just a few years, the programmable graphics processor unit has
evolved into an absolute computing workhorse, as illustrated by Figure 1-1. With
multiple cores driven by very high memory bandwidth, today's GPUs offer
incredible resources for both graphics and non-graphics processing.

GFLOPS

G80GL = Quadro 5600 FX .
G80

300 1 | G80=GeForce 8800 GTX
1 G71 = GeForce 7900 GTX
3 G70 = GeForce 7800 GTX (" 71
1 G70-512
200 A NV40 = GeForce 6800 Ultra G70

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

100

3.0 GHz
oy y3s NV wz Duo
0 E T T ?_ T T T T
Jan Jun Apr May Nov Mar Nov
2003 2004 2005 2006

Figure 1-1. Floating-Point Operations per Second for the
CPU and GPU

The main reason behind such an evolution is that the GPU is specialized for
compute-intensive, highly parallel computation — exactly what graphics rendering is
about — and therefore is designed such that more transistors are devoted to data
processing rather than data caching and flow control, as schematically illustrated by
Figure 1-2.

CUDA Programming Guide Version 0.8.2 1

Chapter 1. Introduction to CUDA

Control

CPU

Figure 1-2. The GPU Devotes More Transistors to Data
Processing

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations — the same program is executed on many
data elements in parallel — with high arithmetic intensity — the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control; and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets such as arrays can use a data-parallel
programming model to speed up the computations. In 3D rendering large sets of
pixels and vertices are mapped to parallel threads. Similatly, image and media
processing applications such as post-processing of rendered images, video encoding
and decoding, image scaling, stereo vision, and pattern recognition can map image
blocks and pixels to parallel processing threads. In fact, many algorithms outside the
tield of image rendering and processing are accelerated by data-parallel processing,
from general signal processing or physics simulation to computational finance or
computational biology.

Up until now, however, accessing all that computational power packed into the
GPU and efficiently leveraging it for non-graphics applications remained tricky:

U The GPU could only be programmed through a graphics API, imposing a high
learning cutve to the novice and the overhead of an inadequate API to the non-
graphics application.

0 The GPU DRAM could be read in a general way — GPU programs can gather
data elements from any part of DRAM — but could not be written in a general
way — GPU programs cannot scatfer information to any part of DRAM —,
removing a lot of the programming flexibility readily available on the CPU.

U Some applications were bottlenecked by the DRAM memory bandwidth, under-
utilizing the GPU’s computational power.

This document describes a novel hardware and programming model that is a direct
answer to these problems and exposes the GPU as a truly generic data-parallel
computing device.

2 CUDA Programming Guide Version 0.8.2

Chapter 1. Introduction to CUDA

1.2 CUDA: A New Architecture for Computing on
the GPU

CUDA stands for Compute Unified Device Architecture and is a new hardware
and software architecture for issuing and managing computations on the GPU as a
data-parallel computing device without the need of mapping them to a graphics
APL. Tt is available for the GeForce 8800 Series, Quadro FX 5600/4600, and
beyond. The operating system’s multitasking mechanism is responsible for
managing the access to the GPU by several CUDA and graphics applications

running concurrently.

The CUDA software stack is composed of several layers as illustrated in Figure 1-3:
a hardware driver, an application programming interface (API) and its runtime, and
two higher-level mathematical libraries of common usage, CUFFT and CUBLAS
that are both described in separate documents. The hardwate has been designed to
support lightweight driver and runtime layers, resulting in high performance.

CPU
Application
\4
CUDA Libraries
¥ 4
CUDA Runtime
¥ ¥
CUDA Driver
GPU

Figure 1-3. Compute Unified Device Architecture Software
Stack

The CUDA API comprises an extension to the C programming language for a
minimum learning curve (see Chapter 4).

CUDA Programming Guide Version 0.8.2 3

Chapter 1. Introduction to CUDA

CUDA provides general DRAM memory addressing as illustrated in Figure 1-4 for
more programming flexibility: both scatter and gather memory operations. From a
programming perspective, this translates into the ability to read and write data at any
location in DRAM, just like on a CPU.

Control ALU | ALu | ALu Control ALU | ALU | ALU

Control
Cache.

Gather

Control ALU | ALu | ALu Control ALU | ALU | ALU

control control
cache. cache.

o alofo] [o]efala

Scatter

Figure 1-4. The Gather and Scatter Memory Operations

S
CUDA Programming Guide Version 0.8.2

Chapter 1. Introduction to CUDA

CUDA features a parallel data cache or on-chip shared memory with very fast
general read and write access, that threads use to share data with each other (see
Chapter 3). As illustrated in Figure 1-5, applications can take advantage of it by
minimizing overfetch and round-trips to DRAM and therefore becoming less
dependent on DRAM memory bandwidth.

Control

Without shared memory

Control

Control
Cache.

ALU || ALU | ALU ALU | ALU | ALU

Control
Cache.

With shared memory

Figure 1-5. Shared Memory Brings Data Closer to the ALUs

e
CUDA Programming Guide Version 0.8.2 5

Chapter 1. Introduction to CUDA

1.3

Document’s Structure

This document is organized into the following chapters:

a

U000

(I

O

Chapter 1 contains a general introduction to CUDA.
Chapter 2 outlines the programming model.

Chapter 3 describes its hardware implementation.
Chapter 4 describes the CUDA API and runtime.

Chapter 5 gives the technical specifications of the GeForce 8800 Series and
Quadro FX 5600/4600.

Chapter 6 gives some guidance on how to achieve maximum performance.

Chapter 7 illustrates the previous chapters by walking through the code of some
simple example.

Appendix A lists the mathematics functions supported in CUDA.
Appendix B is the CUDA runtime API reference.
Appendix C is the CUDA driver API reference.

CUDA Programming Guide Version 0.8.2

2.1

2.2

2.2.1

Chapter 2.
Programming Model

A Highly Multithreaded Coprocessor

When programmed through CUDA, the GPU is viewed as a compute device capable of
executing a very high number of threads in parallel. It operates as a coprocessor to
the main CPU, or Jost: In other words, data-parallel, compute-intensive portions of
applications running on the host are off-loaded onto the device.

More precisely, a portion of an application that is executed many times, but
independently on different data, can be isolated into a function that is executed on
the device as many different threads. To that effect, such a function is compiled to
the instruction set of the device and the resulting program, called a &ernel, is
downloaded to the device.

Both the host and the device maintain their own DRAM, referred to as host memory
and device memory, respectively. One can copy data from one DRAM to the other
through optimized API calls that utilize the device’s high-performance Direct
Memory Access (DMA) engines.

Thread Batching

The batch of threads that executes a kernel is organized as a grid of thread blocks as
described in Sections 2.2.1 and 2.2.2 and illustrated in Figure 2-1.

Thread Block

A thread block is a batch of threads that can cooperate together by efficiently
sharing data through some fast shared memory and synchronizing their execution to
coordinate memory accesses. More precisely, one can specify synchronization points
in the kernel, where threads in a block are suspended until they all reach the
synchronization point.

Each thread is identified by its #hread 1D, which is the thread number within the
block. To help with complex addressing based on the thread ID, an application can
also specify a block as a two- or three-dimensional array of arbitrary size and
identify each thread using a 2- or 3-component index instead. For a two-

CUDA Programming Guide Version 0.8.2 7

Chapter 2. Programming Model

2.2.2

dimensional block of size (D., D)), the thread ID of a thread of index (x, y) is
(x +y D.J) and for a three-dimensional block of size (D, D,, D,), the thread ID of a
thread of index (x, y, g) is (x + y D« + 3 D D).

Grid of Thread Blocks

There is a limited maximum number of threads that a block can contain. However,
blocks of same dimensionality and size that execute the same kernel can be batched
together into a grid of blocks, so that the total number of threads that can be
launched in a single kernel invocation is much larger. This comes at the expense of
reduced thread cooperation, because threads in different thread blocks from the
same grid cannot communicate and synchronize with each other. This model allows
kernels to efficiently run without recompilation on various devices with different
parallel capabilities: A device may run all the blocks of a grid sequentially if it has
very few parallel capabilities, or in parallel if it has a lot of parallel capabilities, or
usually a combination of both.

Each block is identified by its block ID, which is the block number within the grid.
To help with complex addressing based on the block ID, an application can also
specify a grid as a two-dimensional array of arbitrary size and identify each block

using a 2-component index instead. For a two-dimensional block of size (D, D,),
the block ID of a block of index (x; y)is (x + y D).

CUDA Programming Guide Version 0.8.2

Chapter 2. Programming Model

The host issues a succession of kernel invocations to the device. Each kernel is executed as a batch
of threads organized as a grid of thread blocks

Figure 2-1. Thread Batching

CUDA Programming Guide Version 0.8.2 9

Chapter 2. Programming Model

2.3 Memory Model

A thread that executes on the device has only access to the device’s DRAM and
on-chip memory through the following memory spaces, as illustrated in Figure 2-2:
Read-write per-thread registers,

Read-write per-thread local memory,

Read-write per-block shared memory,

Read-write per-grid global memory,

Read-only per-grid constant memory,

UO0000D0

Read-only per-grid fexture memory.

The global, constant, and texture memory spaces can be read from or written to by
the host and are persistent across kernel calls by the same application.

The global, constant, and texture memory spaces are optimized for different
memory usages (see Sections 6.1.2.1, 6.1.2.2, and 6.1.2.3). Texture memory also
offers different addressing modes, as well as data filtering, for some specific data
formats (see Section 4.3.4).

10 CUDA Programming Guide Version 0.8.2

Chapter 2. Programming Model

A thread has access to the device’s DRAM and on-chip memory through a set of
memory spaces of various scopes.

Figure 2-2. Memory Model

CUDA Programming Guide Version 0.8.2 11

3.1

Chapter 3.
Hardware Implementation

A Set of SIMD Multiprocessors with On-Chip
Shared Memory

The device is implemented as a set of multiprocessors as illustrated in Figure 3-1. Each
multiprocessor has a Single Instruction, Multiple Data architecture (SIMD): At any
given clock cycle, each processor of the multiprocessor executes the same
instruction, but operates on different data.

Each multiprocessor has on-chip memory of the four following types:

O One set of local 32-bit registers per processor,
O A parallel data cache ot shared memory that is shared by all the processors and
implements the shared memory space,

QO A read-only constant cache that is shared by all the processors and speeds up reads
from the constant memory space, which is implemented as a read-only region of
device memory,

O A read-only fexture cache that is shared by all the processors and speeds up reads
from the texture memory space, which is implemented as a read-only region of
device memory.

The local and global memory spaces are implemented as read-write regions of
device memory and are not cached.

Each multiprocessor accesses the texture cache via a fexzure unit that implements the
various addressing modes and data filtering mentioned in Section 2.3.

CUDA Programming Guide Version 0.8.2 13

Chapter 3. Hardware Implementation

A set of SIMD multiprocessors with on-chip shared memory.

Figure 3-1. Hardware Model

3.2 Execution Model

A grid of thread blocks is executed on the device by executing one or more blocks
on each multiprocessor using time slicing: Each block is split into SIMD groups of
threads called warps; each of these warps contains the same number of threads,

called the warp sige, and is executed by the multiprocessor in a SIMD fashion; a thread
scheduler periodically switches from one warp to another to maximize the use of the

14 CUDA Programming Guide Version 0.8.2

Chapter 3: Hardware Implementation

multiprocessot’s computational resources. A balf-warp is either the first or second
half of a warp.

The way a block is split into warps is always the same; each warp contains threads of
consecutive, increasing thread IDs with the first warp containing thread 0.
Section 2.2.1 describes how thread IDs relate to thread indices in the block.

A block is processed by only one multiprocessor, so that the shared memory space
resides in the on-chip shared memory leading to very fast memory accesses. The
multiprocessot’s registers are allocated among the threads of the block. If the
number of registers used per thread multiplied by the number of threads in the
block is greater than the total number of registers per multiprocessor, the block
cannot be executed and the corresponding kernel will fail to launch.

Several blocks can be processed by the same multiprocessor concurrently by
allocating the multiprocessot’s registers and shared memory among the blocks.

The issue order of the warps within a block is undefined, but their execution can be
synchronized, as mentioned in Section 2.2.1, to coordinate global or shated memory
accesses. If the instruction executed by a warp writes to the same location in global
or shared memory for more than one of the threads of the warp, how many writes
occur to that location and the order in which they occur is undefined, but one of the
writes is guaranteed to succeed.

The issue order of the blocks within a grid of thread blocks is undefined and there is
no synchronization mechanism between blocks, so threads from two different
blocks of the same grid cannot safely communicate with each other through global
memory during the execution of the grid.

CUDA Programming Guide Version 0.8.2 15

4.1

4.2

Chapter 4.
Application Programming Interface

An Extension to the C Programming
Language

The goal of the CUDA programming interface is to provide a relatively simple path
for users familiar with the C programming language to easily write programs for
execution by the device.

It consists of:

0O A minimal set of extensions to the C language, described in Section 4.2, that
allow the programmer to target portions of the source code for execution on the
device;

O A runtime library split into:

» A host component, described in Section 4.5, that runs on the host and
provides functions to control and access one or more compute devices
from the host;

» A device component, described in Section 4.4, that runs on the device and
provides device-specific functions;

» A common component, described in Section 4.3, that provides built-in
vector types and a subset of the C standard library that are supported in
both host and device code.

It should be emphasized that the only functions from the C standard library that are
supported to run on the device are the functions provided by the common runtime
component.

Language Extensions

The extensions to the C programming language are four-fold:

0O Function type qualifiers to specify whether a function executes on the host or on
the device and whether it is callable from the host or from the device
(Section 4.2.1);

0O Variable type qualifiers to specify the memory location on the device of a
variable (Section 4.2.2);

CUDA Programming Guide Version 0.8.2 17

Chapter 4. Application Programming Interface

4.2.1
4.2.1.1

4.2.1.2

4.2.1.3

42.1.4

18

A new directive to specify how a kernel is executed on the device from the host
(Section 4.2.3);

Four built-in variables that specify the grid and block dimensions and the block
and thread indices (Section 4.2.4).

These extensions come with some restrictions described in each of the sections
below. nvee will give an error or a warning on some violations of these restrictions,
but some of them cannot be detected.

Each source file containing CUDA language extensions must be compiled with the
CUDA compiler nvcc, as briefly described in Section 4.2.5. A detailed desctiption
of nvcc can be found in a separate document.

Function Type Qualifiers

__device_
The __device__ qualifier declares a function that is:

Executed on the device

Callable from the device only.

__global__
The __global___ qualifier declares a function as being a kernel. Such a function is:

Executed on the device,

Callable from the host only.
__host___

The __host___ qualifier declares a function that is:

Executed on the host,
Callable from the host only.

It is equivalent to declare a function with only the __host___ qualifier or to declare
it without any of the __host__,_ device__,or _ global__ qualifier; in either
case the function is compiled for the host only.

However, the __host___ qualifier can also be used in combination with the
__device___ qualifier, in which case the function is compiled for both the host and
the device.

Restrictions
__device__ functions are always inlined.
__device__and __global__ functions do not support recursion.

__device__and __global___ functions cannot declare static variables inside
their body.

__device___and __global __ functions cannot have a variable number of
arguments.

__device__ functions cannot have their address taken; function pointers to
__global__ functions, on the other hand, are supported.

CUDA Programming Guide Version 0.8.2

4.2.2
4.2.2.1

4.2.2.2

4.2.2.3

Chapter 4. Application Programming Interface

The __global___and __host__ qualifiers cannot be used together.
__global__ functions must have void return type.

Any call toa __global__ function must specity its execution configuration as
described in Section 4.2.3.

A calltoa__global__ function is synchronous, meaning it blocks until
completion.

__global__ function parameters are currently passed via shared memory to the
device and limited to 256 bytes.

Variable Type Qualifiers

__device_
The __device__ qualifier declares a variable that resides on the device.
At most one of the other type qualifiers defined in the next three sections may be
used together with ___device__ to further specify which memory space the
variable belongs to. If none of them is present, the variable:

Resides in global memory space,

Has the lifetime of an application,

Is accessible from all the threads within the grid and from the host through the
runtime library.

___constant
The __constant___ qualifier, optionally used together with __device__,

declares a variable that:
Resides in constant memory space,
Has the lifetime of an application,

Is accessible from all the threads within the grid and from the host through the
runtime library.

__shared__
The __shared___ qualifier, optionally used together with __device__, declares a

variable that:

Resides in the shared memory space of a thread block,

Has the lifetime of the block,

Is only accessible from all the threads within the block.
When declaring a variable in shared memory as an external array such as
extern __shared__ float shared[];

the size of the array is determined at launch time (see Section 4.2.3). All variables
declared in this fashion, start at the same address in memoty, so that the layout of
the vatiables in the array must be explicitly managed through offsets. For example, if
one wants the equivalent of

short array0[128];
float arrayl[64];

CUDA Programming Guide Version 0.8.2 19

Chapter 4. Application Programming Interface

4.2.2.4

4.2.3

20

int array2[256];

in dynamically allocated shared memory, one could declare and initialize the arrays
the following way:

extern ___shared__ char array[];

__device__ void func(Q) // __device__ or __global__ function
{

short* array0 = (short*)array;

float* arrayl = (float*)&array0[128];

int* array2 = (int*)&arrayl[64];

}
Restrictions

These qualifiers are not allowed on struct and union members, on formal
parameters and on local variables within a function that executes on the host.

__shared___and ___constant__ cannot be used in combination with each other.
_ shared__and __constant__ variables have implied static storage.

__constant__ variables cannot be assigned to from the device, only from the
host. They are therefore only allowed at file scope.

__shared___ variables cannot have an initialization as part of their declaration.

An automatic variable declared in device code without any of these qualifiers
generally resides in a register. However in some cases the compiler might choose to
place it in local memory. This is often the case for large structures or arrays that
would consume too much register space, and arrays for which the compiler cannot
determine that they are indexed with constant quantities. Inspection of the prx
assembly code (obtained by compiling with the -ptx or —~keep option) will tell if a
variable has been placed in local memory during the first compilation phases as it
will be declared using the . local mnemonic and accessed using the Id. local
and st. local mnemonics. If it has not, subsequent compilation phases might still
decide otherwise though if they find it consumes too much register space for the
targeted architecture.

Pointers in code that is executed on the device are supported as long as the compiler
is able to resolve whether they point to either the shared memory space or the
global memory space, otherwise they are restricted to only point to memory
allocated or declared in the global memory space.

Dereferencing a pointer either to global or shared memory in code that is executed
on the host or to host memory in code that is executed on the device results in an
undefined behavior, most often in a segmentation fault and application termination.

Execution Configuration

Any call to a __global___ function must specify the execution confignration for that
call.

The execution configuration defines the dimension of the grid and blocks that will
be used to execute the function on the device. It is specified by inserting an
expression of the form <<< Dg, Db, Ns >>> between the function name and
the parenthesized argument list, where:

CUDA Programming Guide Version 0.8.2

4.2.4
4.2.4.1

4.2.4.2

4.2.4.3

4.2.4.4

4.2.4.5

4.2.5

Chapter 4. Application Programming Interface

Dg is of type dim3 (see Section 4.3.1.2) and specifies the dimension and size of
the grid, such that Dg.x * Dg.y equals the number of blocks being launched;

Db is of type dim3 (see Section 4.3.1.2) and specifies the dimension and size of
each block, such that Db.x * Db.y * Db.z equals the number of threads per
block;

Ns is of type size_t and specifies the number of bytes in shared memory that
is dynamically allocated per block for this call in addition to the statically
allocated memory; this dynamically allocated memory is used by any of the
variables declared as an external array as mentioned in Section 4.2.2.3; NS is an
optional argument which defaults to 0.

The arguments to the execution configuration are evaluated before the actual
function arguments.

As an example, a function declared as

__global__ void Func(float* parameter);
must be called like this:

Func<<< Dg, Db, Ns >>>(parameter);

Built-in Variables
gridDim

This variable is of type dim3 (see Section 4.3.1.2) and contains the dimensions of
the grid.

blockldx
This variable is of type uINt3 (see Section 4.3.1.1) and contains the block index
within the grid.
blockDim

This variable is of type dim3 (see Section 4.3.1.2) and contains the dimensions of
the block.

threadldx
This variable is of type UINt3 (see Section 4.3.1.1) and contains the thread index
within the block.

Restrictions
It is not allowed to take the address of any of the built-in variables.

It is not allowed to assign values to any of the built-in variables.

Compilation with NVCC

nvcc is a compiler driver that simplifies the process of compiling CUDA code: It
provides simple and familiar command line options and executes them by invoking
the collection of tools that implement the different compilation stages.

nvce’s basic workflow consists in separating device code from host code and
compiling the device code into a binary form or cubin object. The generated host

CUDA Programming Guide Version 0.8.2 21

Chapter 4. Application Programming Interface

4.3

4.3.1
4.3.1.1

4.3.1.2

4.3.2

22

code is output either as C code that is left to be compiled using another tool or as
object code directly by invoking the host compiler during the last compilation stage.

Applications can either ignore the generated host code and load the cu#bin object
onto the device and launch the device code using the CUDA driver API (see
Section 4.5.3), or link to the generated host code, which includes the c#bin object as
a global initialized data array and contains a translation of the execution
configuration syntax described in Section 4.2.3 into the necessary CUDA runtime
startup code to load and launch each compiled kernel (see Section 4.5.2).

A detailed description of NVCC can be found in a separate document.

Common Runtime Component

The common runtime component can be used by both host and device functions.

Built-in Vector Types

charl, ucharl, char2, uchar2, char3, uchar3,
char4, uchar4, shortl, ushortl, short2, ushort2,
short3, ushort3, short4, ushort4, intl, uintl,
Int2, uint2, Int3, uint3, Int4, uint4, longl,
ulongl, long2, ulong2, long3, ulong3, long4,
ulong4, floatl, float2, float3, float4

These are vector types derived from the basic integer and floating-point types. They
are structures and the 1, 20d, 314 and 4% components are accessible through the
tields X, Y, Z, and W, respectively. They all come with a constructor function of the
form make_<type name>; for example,

int2 make_int2(int x, int y);

which creates a vector of type 1nt2 with value (X, y).

dim3 Type

This type is an integer vector type based on uint3 that is used to specify
dimensions. When defining a variable of type dim3, any component left unspecified
is initialized to 1.

Mathematical Functions

Table A-1 in Appendix A contains a comprehensive list of the C/C++ standard
library mathematical functions that are currently supported, along with their
respective error bounds when executed on the device.

When executed in host code, a given function uses the C runtime implementation if
available.

CUDA Programming Guide Version 0.8.2

4.3.3

4.3.4

Chapter 4. Application Programming Interface

Time Function
clock_t clockQ);

returns the value of a counter that is incremented every clock cycle.

Sampling this counter at the beginning and at the end of a kernel, taking the
difference of the two samples, and recording the result per thread provides a
measure for each thread of the number of clock cycles taken by the device to
completely execute the thread, but not of the number of clock cycles the device
actually spent executing thread instructions. The former number is greater that the
latter since threads are time sliced.

Texture Type

Texture memory is exclusively accessed through zexzure references. A texture reference
is bound to some region of memory, called zexture, and defines a specific access
mode for this texture. In patticular, a texture reference has a dimensionality that
specifies whether the texture it is bound to is addressed either as a one-dimensional
array using one texture coordinate, or as a two-dimensional array using two texture
coordinates. Elements of the array are called fexels and the process of reading data
from a texture via a texture reference using some input texture coordinates is called
texture fetching.

A texture reference is declared at file scope as a variable of type texture:
texture<Type, Dim, ReadMode> texRef;

where:

Type specifies the type of data that is returned when fetching the texture; Type
is restricted to the basic integer and floating-point types and any of the vector
types defined in Section 4.3.1.1;

Dim specifies the dimensionality of the texture reference and is equal to 1 or 2;
Dim is an optional argument which defaults to 1;

ReadMode is equal to cudaReadModeNormal izedFloat or
cudaReadModeElementType; if it is cudaReadModeNormal izedFloat
and Type is a 16-bit or 8-bit integer type, the value is actually returned as
floating-point type and the full range of the integer type is mapped to [0, 1];
for example, an unsigned 8-bit texture element with the value Oxff reads as 1; if it
is cudaReadModeElementType, no conversion is performed; ReadMode is
an optional argument which defaults to cudaReadModeElementType.

The texture type is a structure with the following fields:

channelDesc which describes the format of the value that is returned when
fetching the texture; channelDesc is of the following type:
struct cudaChannelFormatDesc {

int x, y, z, w;

enum cudaChannelFormatKind f;
};
where X, y, z, and w are equal to the number of bits of each component of the
returned value and F is:

cudaChannelFormatKindSigned if these components are of signed
integer type,

CUDA Programming Guide Version 0.8.2 23

Chapter 4. Application Programming Interface

4.4

4.4.1

24

cudaChannelFormatKindUnsigned if they are of unsigned integer

type,

cudaChannelFormatKindFloat if they are of floating point type;
normal ized which specifies whether texture coordinates are normalized or
not; if it is non-zero, all elements in the texture are addressed with texture
coordinates in the range [0, 1] rather than in the range [0, width-1] or
[0, height-1], where width and height are the texture sizes;

addressMode which specifies the addressing mode, that is how out-of-range
texture coordinates are handled; addressMode is an array of size two whose
first and second elements specify the addressing mode for the first and second
texture coordinates, respectively; the addressing mode is equal to either
cudaAddressModeClamp, in which case out-of-range texture coordinates are
clamped to the valid range, or cudaAddressModeWrap, in which case out-of-
range texture coordinates are wrapped to the valid range;
cudaAddressModeWrap is only supported for normalized texture coordinates;

TilterMode which specifies the filtering mode, that is how the value returned
when fetching the texture is computed based on the input texture coordinates;
filterMode is equal to cudaFi lterModePoint or
cudaFilterModeLinear; if it is cudaFi I terModePoint, the returned
value is the texel whose texture coordinates are the closest to the input texture
coordinates; if it is cudaF i IterModeL inear, the returned value is the linear
interpolation of the two (for a one-dimensional texture) or four (for a
two-dimensional texture) texels whose texture coordinates are the closest to the
input texture coordinates; cudaFi lterModeLinear is only valid for returned

values of floating-point type.
All these fields, but channe lDesc, may be directly modified in host code.

A texture can be any region of linear memory or a CUDA array (see Section 4.5.1.2).

Textures allocated in linear memory can only be of dimensionality equal to 1 and
addressed using a non-normalized integer texture coordinate; they do not support
the linear filtering mode and the various addressing modes: Out-of-range texture
accesses return zero.

A texture is bound to a texture reference through host runtime functions (see
Sections 4.5.2.4 and 4.5.3.7). Several distinct texture references might be bound to

the same texture or to textures that overlap in memory. A texture reference needs to
be bound to some textutre before it can be used by a kernel to read from the texture

using the functions described in Section 4.4.4. Note that reading from some texture
in linear memory while writing to it in the same kernel execution produces
undefined results.

Device Runtime Component

The device runtime component can only be used in device functions.

Mathematical Functions

For some of the functions of Table A-1, a less accurate, but faster version exists in
the device runtime component; it has the same name prefixed with ___ (such as

CUDA Programming Guide Version 0.8.2

4.4.2

4.4.3

4.4.4

Chapter 4. Application Programming Interface

__sin(x)). These functions are listed in Table A-2, along with their respective
error bounds.

The compiler has an option (-use_fFast_math) to force every function to compile
to its less accurate counterpart if it exists.

Synchronization Function

void __ syncthreads();

synchronizes all threads in a block. Once all threads have reached this point,
execution resumes normally.

__syncthreads() is used to coordinate communication between the threads of a
same block. When some threads within a block access the same addresses in shared
or global memory, there are potential read-after-write, write-after-read, or write-
after-write hazards for some of these memory accesses. These data hazards can be
avoided by synchronizing threads in-between these accesses.

__syncthreads() is allowed in conditional code but only if the conditional
evaluates identically across the entire thread block, otherwise the code execution is
likely to hang or produce unintended side effects.

Type Casting Functions

float __int_as_float(int);

performs a floating-point type cast on the integer argument, leaving the value
unchanged. For example, __int_as_fl1oat(0xC0000000) is equal to -2.
int _ float_as_int(float);

performs an integer type cast on the floating-point argument, leaving the value
unchanged. For example, _ float_as_int(1.0f) is equal to 0x3F800000.

Texture Functions

template<class Type>

Type
texfetch(texture<Type, 1, ReadMode> texRef, float x);

template<class Type>

Type

texfetch(texture<Type, 2, ReadMode> texRef, float x, float y);
fetches the CUDA array bound to texture reference texReTF using texture
coordinates X and Y.

template<class Type>

Type

texfetch(texture<Type, 1, ReadMode> texRef, int x)

fetches the linear memory bound to texture reference texReT using texture
coordinate X.

CUDA Programming Guide Version 0.8.2 25

Chapter 4. Application Programming Interface

4.5

4.5.1
45.1.1

26

Host Runtime Component

The host runtime component can only be used by host functions.
It provides functions to handle:

0 Device management,
Context management,
Memory management,
Code module management,
Execution control,

Texture reference management,

OO0O0000

Interoperability with OpenGL and Direct3D.
It is composed of two APlIs:

0O A low-level API called the CUD.A driver API,

O A higher-level API called the CUDA runtime API that is implemented on top of
the CUDA driver APL

These APIs are mutually exclusive: An application should use either one or the
other.

The CUDA runtime eases device code management by providing implicit
initialization, context management, and module management. The C host code
generated by nvcce is based on the CUDA runtime (see Section 4.2.5), so
applications that link to this code must use the CUDA runtime API.

In contrast, the CUDA driver API requires more code, is harder to program and
debug, but offers a better level of control and is language-independent since it only
deals with ¢u#bin objects (see Section 4.2.5). In particular, it is more difficult to
configure and launch kernels using the CUDA driver API, since the execution
configuration and kernel parameters must be specified with explicit function calls
instead of the execution configuration syntax described in Section 4.2.3. Also, device
emulation (see Section 4.5.2.5) does not work with the CUDA driver APL.

The CUDA driver API is delivered through the cuda dynamic library and all its
entry points are prefixed with cu.

The CUDA runtime API is delivered through the cudart dynamic library and all
its entry points are prefixed with cuda.

Common Concepts
Device

Both APIs provide a way to enumerate the devices available on the system, query
their properties, and select one of them for kernel executions.

One property of a device is its compute capability defined as a major revision number
and a minor revision number. In this version of CUDA, the major revision number
is 1 and the minor revision number is 0.

CUDA Programming Guide Version 0.8.2

45.1.2

4.5.1.3

4.5.1.4

4.5.2
45.2.1

4.5.2.2

Chapter 4. Application Programming Interface

By design, a host thread can execute device code on only one device. As a
consequence, multiple host threads are required to execute device code on multiple
devices.

Memory
Device memory can be allocated either as Znear memory or as CUDA arrays.

Linear memory exists on the device in a 32-bit address space, so separately allocated
entities can reference one another via pointers, for example, in a binary tree.

CUDA arrays are opaque memory layouts optimized for texture fetching. They are
one-dimensional or two-dimensional and composed of elements, each of which has
1, 2 or 4 components that may be signed or unsigned 8-, 16- or 32-bit integers,
16-bit floats (currently only supported through the driver API), or 32-bit floats.
CUDA arrays are only readable by kernels through texture fetching and may only be
bound to texture references with the same number of packed components.

Both linear memory and CUDA arrays are only readable and writable by the host
through the memory copy functions described in Sections 4.5.2.3 and 4.5.3.6.

OpenGL Interoperability

OpenGL buffer objects may be mapped into the address space of CUDA, either to
enable CUDA to read data written by OpenGL or to enable CUDA to write data
for consumption by OpenGL.

Direct3D Interoperability

Direct3D 9.0 vertex buffers may be mapped into the address space of CUDA, either
to enable CUDA to read data written by Direct3D or to enable CUDA to write data
for consumption by Direct3D.

A CUDA context may interoperate with only one Direct3D device at a time,
bracketed by calls to the begin/end functions described in Sections 4.5.2.6 and
4.5.3.9.

CUDA does not yet support:

Versions other than Direct3D 9.0,
Direct3D objects other than vertex buffers,

Mapping of more than one vertex buffers simultaneously.

Runtime API
Initialization

There is no explicit initialization function for the runtime API; it initializes the first
time a runtime function is called. One needs to keep this in mind when timing
runtime function calls and when interpreting the error code from the first call into
the runtime.

Device Management

The functions from Section B.1 are used to manage the devices present in the
system.

CUDA Programming Guide Version 0.8.2 27

Chapter 4. Application Programming Interface

4.5.2.3

28

cudaGetDeviceCount() and cudaGetDeviceProperties() provide a way
to enumerate these devices and retrieve their properties:

int deviceCount;

cudaGetDeviceCount(&deviceCount);

int device;

for (device = 0; device < deviceCount; ++device) {
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, device);

}

cudaSetDevice() is used to select the device associated to the host thread:

cudaSetDevice(device);

A device must be selected before any __global___ function or any function from
Appendix B is called. If this is not done by an explicit call to cudaSetDevice(),
device 0 is automatically selected and any subsequent explicit call to
cudaSetDevice() will have no effect.

Memory Management

The functions from Section B.2 are used to allocate and free device memory, access
the memory allocated for any variable declared in global memory space, and transfer
data between host and device memory.

Linear memory is allocated using cudaMal loc() or cudaMalloc2D() and freed
using cudaFree().

The following code sample allocates an array of 256 floating-point elements in linear
memoty:

float* devPtr;
cudaMal loc((void**)&devPtr, 256);

cudaMalloc2D() is recommended for allocations of 2D arrays as it makes sute
that the allocation is appropriately padded to meet the alignhment requirements
described in Section 6.1.2.1, therefore ensuring best performance when accessing
the row addresses or performing copies between arrays and other regions of device
memory. The returned pitch (or stride) must be used to access array elements. The
following code sample allocates a widthxheight 2D array of floating-point values
and shows how to loop over the array elements in device code:

// host code
float* devPtr;
int pitch;
cudaMal loc2D((void**)&devPtr, &pitch,
width * sizeof(float), height);
myKernel<<<100, 192>>>(devPtr);

// device code
__global__ void myKernel(float* devPtr)

{
for (int r = 0; r < height; ++r) {
float* row = (float*)((char*)devPtr + r * pitch);
for (int c = 0; c < width; ++c) {
float element = row[c];
}
}
}

CUDA Programming Guide Version 0.8.2

45.2.4

Chapter 4. Application Programming Interface

CUDA arrays are allocated using cudaMal locArray() and freed using
cudaFreeArray(). cudaMal locArray() requires a format desctiption created
using cudaCreateChannelDesc().

The following code sample allocates a widthxheight CUDA array of one 32-bit
floating-point component:

cudaChannelFormatDesc channelDesc =

cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
cudaArray cuArray;
cudaMal locArray(&cuArray, &channelDesc, width, height);
cudaGetSymbolAddress() is used to retrieve the address pointing to the
memory allocated for a variable declared in global memory space. The size of the
allocated memory is obtained through cudaGetSymbolSize().

Section B.2 lists all the various functions used to copy memory between linear
memory allocated with cudaMal loc(), linear memory allocated with
cudaMalloc2D(), CUDA arrays, and memory allocated for variables declared in
global or constant memory space.

The following code sample copies the 2D array to the CUDA array allocated in the
previous code samples:

cudaMemcpy2DToArray(&cuArray, 0, 0, devPtr, pitch, width, height,
cudaMemcpyDeviceToDevice);

The following code sample copies some host memory array to device memory:

float data[256];

int size = sizeof(data);

float* devPtr;

cudaMal loc((void**)&devPtr, size);

cudaMemcpy((void**)&devPtr, data, size, cudaMemcpyHostToDevice);
The following code sample copies some host memory array to constant memory:

__constant__ float constData[256];
float data[256];
cudaMemcpyToSymbol (constData, data, sizeof(data));

Texture Reference Management

The functions from Section B.3 are used to manage texture references.

Before a kernel can use a texture reference to read from texture memory, the texture
reference must be bound to a texture using cudaBindTexture() or
cudaBindTextureToArray().

The following code samples bind a texture reference to some linear memory pointed
to by devPtr:

Using the low-level API:
texture<float, 2, cudaReadModeElementType> texRef;
textureReference* texRefPtr;
cudaGetTextureReference(&texRefPtr, “texRef”);
cudaChannelFormatDesc channelDesc =

cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
cudaBindTexture(texRefPtr, devPtr, &channelDesc, size, 0);

Using the high-level API:
texture<float, 2, cudaReadModeElementType> texRef;

CUDA Programming Guide Version 0.8.2 29

Chapter 4. Application Programming Interface

4.5.2.5

4.5.2.6

4.5.2.7

30

cudaBindTexture(texRef, devPtr, size, 0);

The following code samples bind a texture reference to a CUDA array CUArray:

Using the low-level API:

texture<float, 2, cudaReadModeElementType> texRef;
textureReference* texRefPtr;
cudaGetTextureReference(&texRefPtr, “texRef”);
cudaChannelFormatDesc channelDesc;
cudaGetChannelDesc(&channelDesc, &cuArray);
cudaBindTextureToArray(texRef, &cuArray, &channelDesc);

Using the high-level API:

texture<float, 2, cudaReadModeElementType> texRef;
cudaBindTexture(texRef, cuArray);

cudaBindTexture() is used to unbind a texture reference.

OpenGL Interoperability

The functions from Section B.5 are used to control interoperability with OpenGL.
A buffer object needs to be registered to CUDA before it can be mapped. This is
done with cudaGLRegisterBufferObject():

GLuint bufferObj;
cudaGLRegisterBufferObject(bufferObj);

Once it is registered, a buffer object can be read from or written to by kernels using
the device memory address returned by cudaGLMapBufferObject():

GLuint bufferObj;
float* devPtr;
cudaGLMapBufferObject((void**)&devPtr, bufferObj);

Unmapping is done with cudaGLUnmapBufferObject() and unregistering with
cudaGLUnregisterBufferObject().

Direct3D Interoperability
The functions from Section B.6 are used to control interoperability with Direct3D.

Interoperability with Direct3D must be initialized using cudaD3D9Begin() and
terminated using cudaD3D9ENd().

In between these calls, a vertex object needs to be registered to CUDA before it can
be mapped. This is done with cudaD3D9RegisterVertexBuffer():

LPDIRECT3DVERTEXBUFFER9 vertexBuffer;
cudaD3D9RegisterVertexBuffer(vertexBuffer);

Once it is registered, a vertex buffer can be read from or written to by kernels using
the device memory address returned by cudaD3D9MapVertexBuffer():

LPDIRECT3DVERTEXBUFFER9 vertexBuffer;
float* devPtr;
cudaD3D9MapVertexBuffer((void**)&devPtr, vertexBuffer);

Unmapping is done with cudaD3D9UnmapVertexBuffer().

Debugging using the Device Emulation Mode

The programming environment does not include any native debug support for code
that runs on the device, but comes with a device emulation mode for the purpose of
debugging. When compiling an application is this mode (using the —~deviceemu

CUDA Programming Guide Version 0.8.2

Chapter 4. Application Programming Interface

option), the device code is compiled for and runs on the host, allowing the
developer to use the host’s native debugging support to debug the application as if it
were a host application. The preprocessor macro ___DEVICE_EMULATION__is
defined in this mode.

When running an application in device emulation mode, the programming model is
emulated by the runtime. For each thread in a thread block, the runtime creates a
thread on the host. The developer needs to make sure that:

O The host is able to run up to the maximum number of threads per block, plus
one for the master thread.

O Enough memory is available to run all threads, knowing that each thread gets
256 KB of stack.

Many features provided through the device emulation mode make it a very effective

debugging tool:

0O By using the host’s native debugging support developers can use all features that
the debugger supports, like setting breakpoints and inspecting data.

O Since device code is compiled to run on the host, the code can be augmented
with code that cannot run on the device, like input and output operations to files
ot to the screen (printf(), etc.).

O Since all data resides on the host, any device- or host-specific data can be read
from either device or host code; similatly, any device or host function can be
called from either device or host code.

O In case of incorrect usage of the synchronization intrinsic, the runtime detects
dead lock situations.

Developers must keep in mind that device emulation mode is emulating the device,
not simulating it. Therefore, device emulation mode is very useful in finding
algorithmic errors, but certain errors are hatrd to find:

O When a memory location is accessed in multiple threads within the grid at
potentially the same time, the results when running in device emulation mode
potentially differ from the results when running on the device, since in emulation
mode threads execute sequentially.

0 When dereferencing a pointer to global memory on the host or a pointer to host
memory on the device, device execution almost certainly fails in some undefined
way, whereas device emulation can produce correct results.

O Most of the time the same floating-point computation will not produce exactly
the same result when performed on the device as when performed on the host in
device emulation mode. This is expected since in general, all you need to get
different results for the same floating-point computation are slightly different
compiler options, let alone different compilers, different instruction sets, or
different architectures.

In particular, some host platforms store intermediate results of single-precision
floating-point calculations in extended precision registers, potentially resulting in
significant differences in accuracy when running in device emulation mode.
When this occurs, developers can try any of the following methods, none of
which is guaranteed to work:

» Declare some floating-point variables as volatile to force single-precision

storage;
» Use the —=FFloat-store compiler option of gcc,

CUDA Programming Guide Version 0.8.2 31

Chapter 4. Application Programming Interface

4.5.3

453.1

32

Use the /70p or /Tp compiler options of the Visual C++ compiler,

Use _FPU_GETCW(Q) and _FPU_SETCW(Q) on Linux or _controlfp()
on Windows to force single-precision floating-point computation for a
portion of the code by surrounding it with

unsigned int originalCW;

_FPU_GETCW(originalCW);

unsigned int cw = (originalCW & ~0x300) | 0x000;
_FPU_SETCW(cw);

or

unsigned int originalCW = _controlfp(0, 0);
_controlfp(_PC_24, MCW_PC);

at the beginning, to store the current value of the control word and change
it to force the mantissa to be stored in 24 bits using, and with

_FPU_SETCW(originalCW);

or

_controlfp(originalCW, Oxfffff);

at the end, to restore the original control word.

Unlike the GeFotce 8800 Seties and Quadro FX 5600/4600 (see Section 5.2),
host platforms also usually support denormalized numbers. This can lead to
dramatically different results between device emulation and device execution
modes since some computation might produce a finite result in one case and an
infinite result in the other.

Driver API

The driver API is a handle-based, imperative API: Most objects are referenced by
opaque handles that may be specified to functions to manipulate the objects.

The objects available in CUDA are summarized in Table 4-1.

Table 4-1. Objects Available in the CUDA Driver API

Object Handle Description

Device CUdevice CUDA-capable device

Context N/A Roughly equivalent to a CPU process

Module CUmodule Roughly equivalent to a dynamic library

Function CUfunction Kernel

Heap memory CUdeviceptr | Pointer to device memory

CUDA array CUarray Opaque container for 1D or 2D data on the device,
readable via texture references

Texture reference CUtexref Object that describes how to interpret texture memory data

Initialization

Initialization with culnit() is required before any function from Appendix C is
called (see Section C.1).

CUDA Programming Guide Version 0.8.2

4.5.3.2

4.5.3.3

4.5.3.4

Chapter 4. Application Programming Interface

Device Management

The functions from Section C.2 are used to manage the devices present in the
system.

cuDeviceGetCount() and cuDeviceGet() provide a way to enumerate these
devices and other functions from Section C.2 to retrieve their properties:

int deviceCount;
cuDeviceGetCount(&deviceCount);
int device;
for (int device = 0; device < deviceCount; ++device) {
CUdevice cuDevice;
cuDeviceGet(&cuDevice, device);
int major, minor;
cuDeviceComputeCapability(&major, &minor, cuDevice);

}

Context Management

The functions from Section C.3 are used to create, attach, and detach CUDA
contexts.

A CUDA context is analogous to a CPU process. All resources and actions
performed within the compute API are encapsulated inside a CUDA context, and
the system automatically cleans up these resources when the context is destroyed.
Besides objects such as modules and texture references, each context has its own
distinct 32-bit address space. As a result, CUdeviceptr values from different
CUDA contexts reference different memory locations.

Contexts have a one-to-one correspondence with host threads. A host thread may
have only one device context current at a time. For this reason, device contexts are
not explicitly referenced by handle. When a context is created with
cuCtxCreate(), it is made current to the calling host thread and its thread
affiliation cannot be changed.

CUDA functions that operate in a context (most functions that do not involve

device enumeration or context management) will return
CUDA_ERROR_INVALID_CONTEXT if a valid context is not current to the thread.

To facilitate interoperability between third party authored code operating in the
same context, the driver APl maintains a usage count that is incremented by each
distinct client of a given context. For example, if three libraries are loaded to use the
same CUDA context, each library must call cuCtxAttach() to increment the
usage count and cuCtxDetach() to decrement the usage count when the library is
done using the context. The context is destroyed when the usage count goes to 0.
For most libraries, it is expected that the application will have created a CUDA
context before loading or initializing the library; that way, the application can create
the context using its own heuristics, and the library simply operates on the context
handed to it.

Module Management

The functions from Section C.4 atre used to load and unload modules and to retrieve
handles or pointers to variables or functions defined in the module.

Modules are dynamically loadable packages of device code and data, akin to DLLs in
Windows, that are output by nvcc (see Section 4.2.5). The names for all symbols,

CUDA Programming Guide Version 0.8.2 33

Chapter 4. Application Programming Interface

4.5.3.5

4.5.3.6

34

including functions, global variables, and texture references, are maintained at
module scope so that modules written by independent third parties may interoperate
in the same CUDA context.

This code sample loads a module and retrieves a handle to some kernel:

CUmodule cuModule;

cuModulelLoad(&cuModule, “myModule.cubin’);

CUfunction cuFunction;

cuModuleGetFunction(&cuFunction, cuModule, “myKernel’);

Execution Control

The functions described in Section C.5 manage the execution of a kernel on the
device. cuFuncSetBlockShape() sets the number of threads per block for a
given function, and how their threadIDs are assigned. cuFuncSetSharedSize()
sets the size of shared memory for the function. The cuParam* () family of
functions is used specify the parameters that will be provided to the kernel the next
time cuLaunchGrid() or cuLaunch() is invoked to launch the kernel:

cuFuncSetBlockShape(cuFunction, blockWidth, blockHeight, 1);
int offset = 0;

int i;

cuParamSeti (cuFunction, offset, i);

offset += sizeof(i);

float T;

cuParamSetf(cuFunction, offset, T);

offset += sizeof(f);

char data[256];

cuParamSetv(cuFunction, offset, (void*)data, sizeof(data));
offset += sizeof(data);

cuParamSetSize(cuFunction, offset);
cuFuncSetSharedSize(cuFunction, numElements * sizeof(float));
cuLaunchGrid(cuFunction, gridWidth, gridHeight);

Memory Management

The functions from Section C.6 are used to allocate and free device memory and
transfer data between host and device memory.

Linear memory is allocated using cuMemAl loc() or cuMemAlloc2D() and freed
using cuMemFree ().

The following code sample allocates an array of 256 floating-point elements in linear
memoty:

CUdeviceptr devPtr;

cuMemAl loc((void**)&devPtr, 256);

cuMemAlloc2D() is recommended for allocations of 2D arrays as it makes sure
that the allocation is appropriately padded to meet the alignhment requirements
described in Section 6.1.2.1, therefore ensuring best performance when accessing
the row addresses or performing copies between arrays and other regions of device
memory. The returned pitch (or stride) must be used to access array elements. The
following code sample allocates a widthxheight 2D array of floating-point values
and shows how to loop over the array elements in device code:

// host code
CUdeviceptr devPtr;
int pitch;

CUDA Programming Guide Version 0.8.2

Chapter 4. Application Programming Interface

cuMemAl loc2D(&devPtr, &pitch,

width * sizeof(float), height, 4);
cuModuleGetFunction(&cuFunction, cuModule, “myKernel’);
cuFuncSetBlockShape(cuFunction, 192, 1, 1);
cuParamSeti (cuFunction, 0, devPtr);
cuParamSetSize(cuFunction, sizeof(devPtr));
cuLaunchGrid(cuFunction, 100, 1);

// device code
__global__ void myKernel (float* devPtr)

{
for (int r = 0; r < height; ++r) {
float* row = (float*)((char*)devPtr + r * pitch);
for (int ¢ = 0; c < width; ++c) {
float element = row[c];
}
}
}
CUDA arrays are created using CUArrayCreate() and destroyed using
cudaArrayDestroy().

The following code sample allocates a widthxheight CUDA array of one 32-bit
floating-point component:

CUDA_ARRAY_DESCRIPTOR desc;
desc.Format = CU_AD_FORMAT_FLOAT;
desc.NumPackedComponents = 1;
desc.Width = width;

desc.Height = height;

CUarray cuArray;
cuArrayCreate(&cuArray, &desc);

Section C.6 lists all the various functions used to copy memory between linear
memory allocated with cuMemAl loc (), linear memory allocated with
cuMemAlloc2D(), and CUDA arrays. The following code sample copies the 2D
array to the CUDA array allocated in the previous code samples:

CUDA_MEMCPY2D copyParam;

memset(©Param, 0, sizeof(copyParam));
copyParam._dstMemoryType = CU_MEMORYTYPE_ARRAY;
copyParam.dstArray = CuArray;
copyParam.srcMemoryType = CU_MEMORYTYPE_DEVICE;
copyParam.srcDevice = devPtr;
copyParam.srcPitch = pitch;
copyParam_WidthInBytes = width * sizeof(float);
copyParam_Height = height;
cuMemcpy2D(©Param) ;

The following code sample copies some host memory array to device memory:

float data[256];

int size = sizeof(data);

CUdeviceptr devPtr;

cudaMal loc((void**)&devPtr, size);

cuMemcpyStoD(devPtr, data, size);

Finally, cuMemAl locSystem() from Section C.6.4 and cuMemFreeSystem()
from Section C.6.5 can be used to allocate and free page-locked host memory. The
bandwidth between host memory and device memory is higher for page-locked host

CUDA Programming Guide Version 0.8.2 35

Chapter 4. Application Programming Interface

4.5.3.7

4.5.3.8

4.5.3.9

36

memory than for regular pageable memory allocated using mal loc(). However,
page-locked memory is a scarce resource, so allocations in page-locked memory will
start failing long before allocations in pageable memory. In addition, by reducing the
amount of physical memory available to the operating system for paging, allocating
too much page-locked memory reduces overall system performance.

cuMemAl locSystem()and cuMemFreeSystem() can be used with the runtime
APL

Texture Reference Management

The functions from Section C.7 are used to manage texture references.

Before a kernel can use a texture reference to read from texture memory, the texture
reference must be bound to a texture using cuTexRefSetAddress() or
cuTexRefSetArray().

The following code samples bind a texture reference to some linear memory pointed
to by devPtr:

texture<float, 2, cudaReadModeElementType> texRef;
CUtexref cuTexRef;

cuModuleGetTexRef(&cuTexRef, cuModule, “texRef”);
cuTexRefSetAddress(cuTexRef, devPtr, size);

The following code samples bind a texture reference to a CUDA array CUArray:

texture<float, 2, cudaReadModeElementType> texRef;

CUtexref cuTexRef;

cuModuleGetTexRef(&cuTexRef, cuModule, “texRef”);
cuTexRefSetArray(cuTexRef, cuArray, CU_TRSA_ OVERRIDE_FORMAT);

Section C.7 lists various functions used to set address mode, filter mode, format,
and other flags for some texture reference.

OpenGL Interoperability

The functions from Section C.8 are used to control interoperability with OpenGL.
Interoperability with OpenGL must be initialized using cuGLInit().

A buffer object needs to be registered to CUDA before it can be mapped. This is
done with cuGLRegisterBufferObject():

GLuint bufferObj;
cuGLRegisterBufferObject(bufferObj);

Once it is registered, a buffer object can be read from or written to by kernels using
the device memory address returned by cuGLMapBufferObject():

GLuint bufferObj;

CUdeviceptr devPtr;

int size;

cuGLMapBufferObject(&devPtr, &size, bufferObj);

Unmapping is done with cuGLUnmapBufferObject() and unregistering with
cuGLUnregisterBufferObject().

Direct3D Interoperability

The functions from Section B.6 are used to control interoperability with Direct3D.

Interoperability with Direct3D must be initialized using cuD3D9Begin() and
terminated using cuD3D9ENd().

CUDA Programming Guide Version 0.8.2

Chapter 4. Application Programming Interface

In between these calls, a vertex object needs to be registered to CUDA before it can
be mapped. This is done with cuD3D9RegisterVertexBuffer():

LPDIRECT3DVERTEXBUFFER9 vertexBuffer;
cuD3D9RegisterVertexBuffer(vertexBuffer);
Once it is registered, a vertex buffer can be read from or written to by kernels using

the device memory address returned by cuD3D9MapVertexBuffer():

LPDIRECT3DVERTEXBUFFER9 vertexBuffer;
CUdeviceptr devPtr;

int size;

cuD3D9MapVertexBuffer(&devPtr, &size, vertexBuffer);
Unmapping is done with cuD3D9UnmapVertexBuffer().

CUDA Programming Guide Version 0.8.2 37

5.1

Chapter 5.

GeForce 8800 Series and
Quadro FX 5600/4600
Technical Specification

General Specification

The GeForce 8800 Seties and Quadro FX 5600/4600 have the following

characteristics:
Number of Clock Amount of
multiprocessors frequency device memory
(GH2) (MB)
GeForce 8800 GTX 16 1.35 768
GeForce 8800 GTS 12 1.2 640
Quadro FX 5600 16 1.35 1500
Quadro FX 4600 12 1.2 768
O The maximum number of threads per block is 512;
O The maximum size of each dimension of a grid of thread blocks is 65535;
O The warp size is 32 threads;
O The number of registers per multiprocessor is 8192;
O The amount of shared memory available per multiprocessor is 16 KB divided

(M

(W]

into 16 banks (see Section 6.1.2.4);

The amount of constant memory available is 64 KB with a cache working set of
8 KB per multiprocessor;

The cache working set for 1D textures is 8 KB per multiprocessor;

The maximum number of blocks that can run concurrently on a multiprocessor
is 8;

The maximum number of warps that can run concurrently on a multiprocessor is
24;

Th