
ATI CTM Guide

Technical Reference Manual

Version 1.01

ii
© 2006 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties
with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions
at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty,
relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual
property right.

AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.

Reproduction of this manual, or parts thereof, in any form, without the express written permission of Advanced Micro Devices, Inc. is strictly prohibited.

Trademarks

AMD, the AMD Arrow logo, AMD Athlon, AMD Opteron and combinations thereof, AMD-XXXX, ATI and ATI product and product-feature names
are trademarks of Advanced Micro Devices, Inc.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft is a registered trademark of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Disclaimer

While every precaution has been taken in the preparation of this document, Advanced Micro Devices, Inc. assumes no liability with respect to
the operation or use of AMD hardware, software, or other products and documentation described herein, for any act or omission of AMD
concerning such products or this documentation, for any interruption of service, loss or interruption of business, loss of anticipatory profits, or for
punitive, incidental or consequential damages in connection with the furnishing, performance, or use of the AMD hardware, software, or other
products and documentation provided herein.

Advanced Micro Devices, Inc. reserves the right to make changes without further notice to a product or system described herein to improve
reliability, function or design. With respect to AMD products which this document relates, AMD disclaims all express or implied warranties
regarding such products, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-
infringement.

Documentation Updates

AMD is constantly improving its product and associated documentation. To maximize the value of your AMD product, you should ensure that
you have the latest documentation. AMD’s documentation contains helpful installation/configuration tips and other valuable feature information.
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Table of Contents

Chapter 1:
Introduction ... 1

1.1 About this Document . 1

1.2 Audience . 1

1.3 Related Documents . 1

Chapter 2:
Specifications .. 3

2.1 CTM Units . 3
2.1.1 The ATI Data Parallel Processor Array 4
2.1.2 Processor Execution Unit 4
2.1.3 Conditional Operation Unit 5
2.1.4 Memory Controller Unit 5

2.2 CTM Commands . 8
2.2.1 Processor Execution Unit Commands 10
2.2.2 Memory Controller Unit Commands 13
2.2.3 Conditional Output Unit Commands 21

Chapter 3:
DPP Array Instruction Set Architecture .. 23

3.1 Instructions. 23

3.2 Instruction Words. 23
3.2.1 Synchronization of instruction streams 24

3.3 ALU Instructions . 25
3.3.1 Sources 25
3.3.2 Presubtract 26
3.3.3 Inputs 26
3.3.4 The Operation 27
3.3.5 Instruction Modifiers 29
3.3.6 Writemasks 30
3.3.7 Destination 30
3.3.8 Output 30
3.3.9 Setting Predicate Bits 31
3.3.10 ALU Result 32

3.4 Texture Instructions. 32
3.4.1 Operations 33
3.4.2 Semaphore 33
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

iv
3.5 Flow Control . 34
3.5.1 Dynamic Flow Control 34
3.5.2 Stacks and Branch Counters 35
3.5.3 Fields 36
3.5.4 Common Flow Control Statements 38
3.5.5 Optimizations 40

3.6 Note on Floating Point . 40
3.6.1 Pervasive Deviations from IEEE 40
3.6.2 ALU Non-Transcendental Floating Point 41
3.6.3 ALU Transcendental Floating Point 42
3.6.4 Texture Floating Point 43

3.7 Errata . 43

Chapter 4:
DPP Application Binary Interface .. 45

4.1 Executable Files . 45
4.1.1 File Format 45
4.1.2 ELF Header 45
4.1.3 Program Code Sections 46
4.1.4 Program Loading 46

Chapter 5:
Device Interface... 51

5.1 Functions . 51
5.1.1 amCloseManagedConnection 51
5.1.2 amCommandBufferConsumed 51
5.1.3 amOpenManagedConnection 51
5.1.4 amSubmitCommandBuffer 52
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Chapter 1
Introduction

1.1 About this Document

ATI’s “Close To the Metal" (CTM) Device is designed to open up the high-performance, floating-point, parallel
processor array found in ATI graphics hardware. CTM consists of this processor array plus a handful of supporting
components that control and feed the array.

This manual provides a programmatic overview of the CTM.

1.2 Audience

This manual is intended for experienced design engineers.

1.3 Related Documents

• ATI CTM Device Interface included with CTM distibution.
• Assembler/Disassembler Guide included with CTM distibution.
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

2 Related Documents
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Chapter 2
Specifications

CTM is designed to expose the parallel array of floating-point processors found in ATI graphics hardware. It is
controlled with a few commands to set parameters, invalidate and flush caches, and start the processors in the
processing array. These commands reside in memory (see ATI CTM Device Interface for further information). This
chapter specifies how CTM reads these commands and its behavior upon processing each.

A block diagram of CTM is presented in Figure 2-1. In addition to the ATI Data Parallel Processor Array (DPP), CTM
comprises three major components: the Processor Execution Unit (PE), the Conditional Operation Unit (CO), and the
Memory Contoller Unit (MC).

Figure 2-1: CTM Block Diagram

The PE reads commands sequentially from a specified area of memory. Besides redirecting commands to other units
within CTM, the PE distributes processing work to the DPP. The computation on an individual processor is subject
to a condition returned by the CO. Program output results are written to memory, also based upon a condition returned
by the CO. Memory for instructions, constants, program inputs, program outputs, and a buffer used by the CO is
accessed through the MC. In addition to satisfying read and write requests, the MC computes memory address offsets,
based on a description of the format of the requested data in memory.

2.1 CTM Units

The following sections describe the CTM units in detail.
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

4 CTM Units
2.1.1 The ATI Data Parallel Processor Array
The ATI Data Parallel Processor (DPP) Array comprises one or more processors, each a programmable unit that can
execute a series of instructions.

Each processor in the array is directed by the Processor Execution Unit (see Section 2.1.2). If a processor is idle, the
PE may request that it execute a program. It does so by passing to the processor an identifier pair (i, j), where i and j
are non-negative (range-limited) integers, as well as its conditional value. Upon receiving the identifier pair and
conditional value, the processor informs the PE that it is busy, resets its program counter to zero, and begins program
execution. The processor remains busy until its internal program counter reaches the end of the program, as specified
in the Application Binary Interface. After the processor executes the instruction at the end-of-program address, the
processor halts and informs that PE that it is again idle.

Instructions for a program, as well as constants, inputs, and outputs to which the program may refer, are stored in
memory, and read or written through the MC (see Section 2.1.4). Conceptually, each processor maintains a separate
interface to the MC. This interface consists of two non-negative (range-limited) integer indices (x, y) and a field
identifying the type of memory access the processor is requesting (program instruction, floating-point constant,
integer constant, boolean constant, or input read; or output write).

The (x, y) pair is different for each of the types of memory that a processor may request. For instructions, (x, y) is
equal to (pc, 0), where pc is the current program counter. The index pair for each of the constants is (c, 0), where c is
the index specified by the program instruction requesting the constant. The index pair and identifier for inputs are
specified by the program instruction requesting an input value. The index pair for an output is always the pair assigned
to the processor by the PE (i, j), while the identifier for the output is specified in the requesting program instruction.

If conditional output is enabled, output write requests by a processor are conditionally generated, based on a value
returned by the Conditional Output Unit (see Section 2.1.3). The processor sends a conditional value (v) and its (i, j)
index pair to the CO, and the CO then performs a conditional test based on the value and index pair. If the test passes,
the processors dispatch l output write requests to the MC; otherwise no output write requests are generated. The
conditional value, v, depends on program that is currently being executed. The value may be specified directly in an
instruction in the program, or it may equal the conditional value sent to the processor by the PE. If conditional output
is disabled, the processor behaves as if the conditional output test always passes. Conditional output is enabled by
setting the condition location to the processors with the set_cond_loc command (see page 22).

All processors refer to the same instructions and constants, but may index different input, output, and conditional data.
Thus, if multiple processors are working simultaneously, CTM exports a SIMD programming model. Individual
processors, however, may or may not execute in SIMD lock-step in a particular CTM implementation; the behavior
of individual processors relative to other processors is unspecified.

2.1.2 Processor Execution Unit
The Processor Execution Unit interprets commands from a command buffer, forwarding them to other units in CTM
if necessary. Under normal operation, the PE consumes commands as fast as it can process them or pass them along.
If, however, the PE receives a wait_for_idle command (see page 11), it stops reading commands until all processors
in the processor array are idle. Once the processors are idle, the PE again starts to read commands, beginning with the
one following the wait_for_idle command.

In addition to parsing the command buffer, the PE is responsible for distributing work to the processors in the
processor array. The PE's distribution of work is based on the rectangular domain D \subset Z^2, with D = { (i,j) | i0
<= i <= i1, j0 <= j <= j1 }. The parameters i0, j0, i1, and j1 are specified to the PE through the set_domain command
(see page 10).

When the PE receives a start_program command (see page 11), it begins allocating work for the processors. If
conditional program execution is disabled, the PE schedules the processors to run the current program once for each
index pair (i, j) in the current domain. The specific partitioning of work among the processors and the order in which
the index pairs are scheduled is unspecified. As described in Section 2.1.1, the PE sends a corresponding index pair
and its conditional value to an idle processor in order to execute the program for that index pair. The result of the
entire computation is as if the program were executed in SIMD across all index pairs.[x]
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Conditional Operation Unit 5
If conditional program execution is enabled, however, program execution on a given pair may be skipped. Prior to
scheduling an index pair to a processor, the PE sends it to the Conditional Operation Unit (CO), along with its
conditional value. The CO performs a conditional test (as described in Section 2.1.3) based on the index pair and
conditional value, and returns its result to the PE. If the test fails, the index pair is skipped; otherwise a processor in
the array is scheduled to run the current program on the pair. The conditional value is set with the set_cond_val
command (see page 10). Conditional program execution is enabled by setting the conditional location to the PE with
the set_cond_loc command (see page 22).

The PE maintains counters that may be useful in analyzing CTM's performance. These are total clocks since last reset
and total clocks during which at least one processor was active since last reset. The init_perf_counters (see page 12
for performance counter commands) sets up the counters for initial use. Start_perf_counters resets the counters and
starts them counting; Stop_perf_counters stops the counters. The counters may be read into an array in GPU-
addressable system memory using read_perf_counters. Read_perf_counters takes one parameter, which gives the
GPU address of the first element of the array. Total clocks is written in the first element; the second element is clocks
active.

2.1.3 Conditional Operation Unit
The Conditional Operation Unit (CO) performs a conditional test for clients within CTM. Clients include the PE (for
conditional program execution) and the DPP (for conditional program output). The CO evaluates a condition based
on an index pair (i, j) and a conditional value v, which are both sent to the CO by a requesting client.

The CO test is one of three possible cases: the test always passes, the test always fails, or the test is a comparison
between the conditional value v from a client to a value b read from a conditional output buffer residing in memory:

result = v op b, where op is one of <, <=, =, >=, or >

The conditional output buffer value b is obtained by the CO issuing a read request to the Memory Controller Unit with
index pair (i, j) and the conditional output buffer identifier (see page 7). The CO test is set with the set_cond_test
command (see page 21).

In addition, if the conditional test passes, the CO will write the client conditional value v to the conditional output
buffer by issuing a write request to the MC with index pair (i, j) and the conditional output identifier.

2.1.4 Memory Controller Unit
The Memory Controller Unit (MC) translates addresses and satisfies requests to read and write memory for clients
within CTM. Clients include the PE (for command buffers), the CO (for the conditional buffer), and the DPP (for
program instructions, floating-point, integer, and boolean constants, inputs, and outputs). The MC can read or write
two kinds of memory: private memory that is accessible only by the MC (local memory), and memory that is
accessible both by the MC and a host processor (remote or system memory).

An MC memory address is a 32-bit unsigned integer. The MC distinguishes between local and remote memory by
maintaining distinct address ranges for each, within its 32-bit address range. The address mapping is system-
dependent and is described in the ATI CTM Device Interface.

The MC computes the memory address as a function of an index pair, (x, y), the number of elements in each row of
data (pitch), a base address offset (offset), a tiling format (linear or tiled plus an optional 2x2 superfine tiling on single-
channel input data reads), and the bytes per element (bpe) derived from the data format (format). The amount of data
read from or written to memory at this address is given by the bytes per element.

The address translation for the different data formats is summarized in the following two tables. If the tiling format
of the memory is linear, the address is provided in Table 1. If, on the other hand, the memory is tiled, the address is
given in Table 2.
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

6 CTM Units
1. Address Translation for Linear Memory Format

2. Address Translation for Tiled Memory Formats

The 2x2 superfine tiling option augments the linear and tiled format addresses described above. When applied to
single-channel inputs, it operates as if four independent data elements are requested with index pairs given by (x+1,
y), (x, y+1), (x+1, y+1), and (x, y). These four values are packed into the four channels (c0, c1, c2, c3), respectively,
of the register specified by the program making the memory request. Without the 2x2 superfine tiling option, a
program would need to make four independent input memory requests, across four independent instructions, to
achieve the same result. The 2x2 superfine tiling is ignored for all memory clients besides inputs, and its behavior is
undefined if the input memory format has more than one channel.

The index pair (x, y) and a unique identifier are sent to the MC by the client requesting the memory read or write. The
pitch, offset, tiling, and format parameters associated with the client identifier are maintained in the MC (commands
to set these parameters are summarized below), and they are accessed when a client requests a memory transaction.
The parameters passed to the memory control unit are different for each of the clients making a memory request. They
are detailed, for each of the possible identifiers, in the following subsections.

Input Parameters
The MC supports clients (processors in the data parallel processor array) requesting a memory read for up to 16
distinct program inputs. The (x, y) index pair for a given request is specified in an instruction being executed on one
of the processors. The index pair is sent to the MC along with the program input identifier, also specified in the
requesting instruction. The pitch, offset, tiling, and format for each input identifier are shared among all processors
in the processor array. These values are provided to the MC with the set_inp_fmt command (see page 15).

The MC may service any number of requests from the processors during program execution. If the data can be found
in the MC input read cache, then the MC will satisfy the request from the cache. Otherwise, it will pull data into the
cache (either from GPU or system memory, as appropriate), in the process of servicing the request. The input read
cache is shared among all 16 program inputs, and must be invalidated to guarantee correct reading of data that has
changed in memory. The input read cache is invalidated with the inv_inp_cache command (see page 20).

Bytes Bits[31:5] Bits [4:0]

1 y[11:0]*pitch[13:5]+x[11:5]+offset[31:5] x[4:0]

2 y[11:0]*pitch[13:4]+x[11:4]+offset[31:5] x[3:0],0

4 y[11:0]*pitch[13:3]+x[11:3]+offset[31:5] x[2:0],00

8 y[11:0]*pitch[13:2]+x[11:2]+offset[31:5] x[1:0],000

16 y[11:0]*pitch[13:1]+x[11:1]+offset[31:5] x[0],0000

Bytes Bits [31:11] Bits [10:9] Bits [8:7] Bits [6:5] Bits [4:0]

1 y[11:5]*pitch[13:6]+x[11:6]+
offset[31:11]

y[4]^x[6],x[5]^y[5] y[3]^x[5],x[4]^y[4] y[2],x[3] y[1:0],x[2:0]

2 y[11:5]*pitch[13:5]+x[11:5]+
offset[31:11]

y[4]^x[5],x[4]^y[5] y[3]^x[4],x[3]^y[4] y[2],x[2] y[1:0],x[1:0],0

4 y[11:4]*pitch[13:5]+x[11:5]+
offset[31:11]

y[3]^x[5],x[4]^y[4] y[2]^x[4],x[3]^y[3] y[1],x[2] y[0],x[1:0],00

8 y[11:4]*pitch[13:4]+x[11:4]+
offset[31:11]

y[3]^x[4],x[3]^y[4] y[2]^x[3],x[2]^y[3] y[1],x[1] y[0],x[0],000

16 y[11:3]*pitch[13:4]+x[11:4]+
offset[31:11]

y[2]^x[4],x[3]^y[3] y[1]^x[3],x[2]^y[2] y[0],x[1] x[0], 0000
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Memory Controller Unit 7
Output Parameters
The MC supports clients (processors in the data parallel processor array) requesting memory be written for up to 4
distinct program outputs. The (x, y) pair for a given output memory request is equal to the (i, j) output domain pair
assigned to a processor or conditional output unit by the PE as described in Section 2.1.2. This index is sent to the MC
along with the program output identifier that is specified in the program instruction being executed. The pitch, offset,
tiling, and format for each output identifier is shared among all processors in the processor array and the conditional
output block. These values are provided to the MC with the set_out_fmt command (see page 16).

The MC may service any number of requests from the processors during program execution. If the data can be placed
in the MC output write cache, then the MC will place the incoming data into the cache. Otherwise, it will push out a
portion of the cache (either to GPU or system memory, as appropriate), if necessary, to free space in the cache for the
new request. The output write cache is shared among all 4 program outputs, and must be flushed to guarantee that any
data written by the processors are placed in memory. The output write cache is flushed with the flush_out_cache
command (see page 20).

A write request to the output buffers can be masked with the set_out_mask command (see page 21). This command
specifies, per output channel, whether the output buffer is updated. If the writemask for a given output channel is 0,
then its values are not updated when the MC services a write request.

Conditional Operation Parameters
The MC supports clients (the CO) requesting memory be read and written for a single conditional output buffer. The
(x, y) pair is equal to the (i, j) output domain pair assigned to the CO by the PE as described in Section 2.1.2. This
pair is sent to the MC along with the conditional output identifier. The pitch, offset, tiling, and format for the output
are provided to the MC with the set_cond_out_fmt command (see page 18).

The MC may service any number of requests from the CO during program execution. These may be either read
requests or write requests.

If the data for a read request can be found in the MC conditional output cache, then the MC will satisfy the request
from the cache. Otherwise, it will pull data into the cache (either from local or remote memory, as appropriate), in the
process of servicing the request. The conditional output cache must be invalidated to guarantee that data that has
changed in memory is properly read. The cache can be invalidated with the inv_cond_out_cache command (see
page 20).

If the data for a write request can be placed in the MC conditional output cache, then the MC will place the incoming
data into the cache. Otherwise, it will push out a portion of the cache (either to GPU or system memory, as
appropriate), if necessary, to free space in the cache for the new request. The conditional output cache must be flushed
to guarantee that any data written by the conditional output block is placed in memory. The cache can be flushed with
the flush_cond_out_cache command (see page 20).

A write request to the conditional output buffer can be suppressed with the set_cond_out_mask command (see page
21). If the writemask set by this command is 0, then no values are written to the conditional output cache or memory.

Floating Point, Integer, and Boolean Constant Parameters
The Memory Contoller Unit supports clients (processors in the data parallel processor array) requesting a memory
read for floating point, integer, and boolean program constants. The (x, y) index pair for a given constant memory
request is obtained from the constant index referenced in the program instruction being executed. The index pair is
sent to the MCU along with the constant type identifier, which also is specified in the program instruction. The pitch,
offset, tiling, and format for each type of constant (three types) is shared among all processors in the processor array.
These values are provided to the MCU with the set_constf_fmt, set_consti_fmt, and set_constb_fmt commands.

The MC may service any number of requests from the processors during program execution. If the data can be found
in the corresponding MC constant read cache, then the MC will satisfy the request from the cache. Otherwise, it will
pull data into the cache (either from GPU or system memory, as appropriate), in the process of servicing the request.
The constant read caches must be invalidated to guarantee that data that has changed in memory is properly read. The
constant read caches can be invalidated with the inv_constf_cache, inv_consti_cache, and inv_constb_cache
commands.
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

8 CTM Commands
Instruction Parameters
The Memory Contoller Unit supports clients (processors in the data parallel processor array) requesting a memory
read for program instructions. The (x, y) index pair for a given memory request is obtained from an internal program
counter in each processor that is incremented as the program is executed. The index pair is then sent to the MCU. The
pitch, offset, tiling, and format for the instructions are shared among all processors in the processor array. These
values are provided to the MC with the set_inst_fmt command.

The MC may service any number of requests from the processors during program execution. If the data can be found
in the corresponding MC instruction read cache, then the MC will satisfy the request from the cache. Otherwise, it
will pull data into the cache (either from GPU or system memory, as appropriate), in the process of servicing the
request. The instruction read cache must be invalidated to guarantee that data that has changed in memory is properly
read. The instruction read cache can be invalidated with the inv_inst_cache command.

2.2 CTM Commands

CTM commands are packed into CTM Command Buffers. A CTM Command Buffer is a tightly packed region in
memory interpreted as a sequence of commands and their parameters, starting at the base address of the command
buffer. Each CTM command is a 32-bit unsigned integer. It is followed immediately in memory by one or more
parameters, each of which is also a 32-bit unsigned integer. No commands take a variable number of parameters and
all commands have at least one parameter.

All CTM Commands can be found in Table 3. The table contains the command name, unique opcode, parameters,
and a brief description. More complete descriptions are given in the following subsections. Some commands will
result in undefined behavior if a program is currently executing on the processor array. Such a command must follow
a wait_for_idle command and precede any subsequent start_program command in the command buffer to be
predictable. Other commands are pipelined within CTM, and can be issued at any time.

3. CTM Unit Commands

Opcode Pipelined Parameters Description

Processor Execution Unit Commands

init_perf_counters x'C0010200 'yes 0: flags Initialize performance counters.

start_perf_counters x'C0000300 'yes 0: Reserved Set performance counters to zero
and start them counting.

stop_perf_counters x'C0000400 'yes 0: Reserved Stop the performance counters
counting.

read_perf_counters x'C0010500 'no 0: GPU address Write the vales of the performance
counters, starting at the supplied
GPU address.

set_cond_val x'C0000600 'yes 0: Value Set the value sent by the PEU to the
Conditional Operation Unit when
conditional execution is enabled.

set_domain x'C0030700 'yes 0: i0
1: j0
2: i1
3: j1

Set the domain for program
execution to be the rectangle (i0, j0)
- (i1, j1) inclusive.

start_program x'C0000800 'yes 0: Reserved Instruct the Processor Execution
Unit to start the program.
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Memory Controller Unit 9
wait_for_idle x'C0000900 'yes 0: Reserved Block reading of the command
buffer until all processing in the
GPU has completed. Immediately
after processing has completed,
continue to consume the command
buffer.

Memory Controller Unit Commands

set_inst_fmt x'C0010A00 'no 0: Base Address
1: Format

Set the base address offset, pitch,
tiling, and data format for the
program instructions.

set_inp_fmt x'C0030B00 'no 0: Input Index
1: Base Address
2: Format
3: Height

Set the base address offset, pitch,
tiling, and data format for the given
input.

set_out_fmt x'C0030C00 'no 0: Output Index
1: Base Address
2: Format
3: Height

Set the base address offset, pitch,
tiling, and data format for the given
output.

set_cond_out_fmt x'C0020D00 'no 0: Base Address
1: Format
2: Height

Set the base address offset, pitch,
tiling, and data format for the
conditional output.

set_constf_fmt x'C0010E00 'no 0: Base Address
1: Format

Set the base address offset, pitch,
tiling, and data format for the
floating point constants.

set_consti_fmt x'C0010F00 'no 0: Base Address
1: Format

Set the base address offset, pitch,
tiling, and data format for the integer
constants.

set_constb_fmt x'C0011000 'no 0: Base Address
1: Format

Set the base address offset, pitch,
tiling, and data format for the
boolean constants.

inv_inst_cache x'C0001100 'yes 0: Reserved Invalidate the instruction cache.

inv_constf_cache x'C0001200 'yes 0: Reserved Invalidate the floating point
constant cache.

inv_consti_cache x'C0001300 'yes 0: Reserved Invalidate the integer constant
cache.

inv_constb_cache x'C0001400 'yes 0: Reserved Invalidate the boolean constant
cache.

inv_cond_out_cache x'C0001500 'yes 0: Reserved Invalidate the conditional output
cache.

inv_inp_cache x'C0001600 'yes 0: Reserved Invalidate the input cache.

flush_out_cache x'C0001700 'yes 0: Reserved Flush the output cache.

flush_cond_out_cache x'C0001800 'yes 0: Reserved Flush the conditional output cache.

set_out_mask x'C0001900 'yes 0: Mask Set the write mask for the output
channels.

set_cond_out_mask x'C0001A00 'yes 0: Mask Set the write mask for the
conditional output buffer.

Opcode Pipelined Parameters Description
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

10 CTM Commands
2.2.1 Processor Execution Unit Commands
This section contains all CTM commands for the Processor Execution Unit.

Set Conditional Execution Value Command
The set_cond_val command takes a single parameter, a 32-bit value to send to the Conditional Operation Unit when
the conditional execution flag is set.

Parameter 0: value

Set Domain Command
The set_domain command takes four parameters, which specify i0, j0, i1, and j1 values for the current domain, as
described in Section 3.2. These are unsigned integers, of a range given by the bits in use.

Parameter 0: i0

Conditional Output Unit Commands

set_cond_test x'C0001B00 'yes 0: Condition Set the test the conditional output
unit will evaluate.

set_cond_loc x'C0001C00 'yes 0: Location Set location for the conditional test
(PE or DPP).

Opcode Pipelined Parameters Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

val

Bits Field Name Description

31:0 val The conditional execution value for the PEU to pass to the Conditional
Operation Unit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i0

Bits Field Name Description

11:0 i0 The i0 domain parameter.

31:12 Reserved Reserved
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Processor Execution Unit Commands 11
Parameter 1: j0

Parameter 2: i1

Parameter 3: j1

Start Program Command
The start_program command takes one, reserved parameter. Upon receiving this command, the PE distributes work
to the processors as described in Section 3.2.

Parameter 0:

Wait For Idle Command
The wait_for_idle command takes one, reserved parameter. After receiving this command, the PE blocks all further
command processing until all processors in the DPP are idle. Once all processors are idle, processing of subsequent
commands resumes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

j0

Bits Field Name Description

11:0 j0 The j0 domain parameter.

31:12 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i1

Bits Field Name Description

11:0 i1 The i1 domain parameter.

31:12 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

j1

Bits Field Name Description

11:0 j1 The j1 domain parameter.

31:12 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description

31:0 Reserved Reserved
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

12 CTM Commands
Parameter 0:

Initialize Performance Counters Command
The init_perf_counters command takes one parameter. This command executes any setup required for performance
counter use. If bit 0 of the parameter is 1, performance counters are enabled. If it is 0, performance counters are
disabled, and the other performance counter commands have no effect.

Parameter 0:

Start Performance Counter Command
The start_perf_counters command takes one, reserved parameter. This command sets enabled performance
counters to zero, and then starts the counters counting.

Parameter 0:

Stop Performance Counters Command
The stop_perf_counters command takes one, reserved parameter. This command stops any enabled counters
counting.

Parameter 0:

Read Performance Counters Command
The read_perf_counters command takes one parameter. This command transfers the performance counters to an
area in memory beginning at the GPU address supplied in the parameter. The counters are written as 32-bit unsigned
integers in the order given in Section 2.1.2 .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description

31:0 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

e

Bits Field Name Description

31:1 Reserved Reserved

0 enable Turn performance counters on or off.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description

31:0 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description

31:0 Reserved Reserved
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Memory Controller Unit Commands 13
If performance counters are disabled, this command has no effect.

Parameter 0: base address

2.2.2 Memory Controller Unit Commands
This section contains all of the commands for the memory controller unit.

All address values are provided in the same format: a 2K-aligned base format. The lower eleven bits are ignored by
CTM, and the address is treated as if all of the bits were zero. These base addresses are used in the address calculation
of the MC, as described in Section 2.1.4. The base address parameter is:

Similarly, all format parameters are expressed the same way. The format contains the pitch, tiling format, and data
format of the information in memory to which it refers. The pitch is given in multiples of 4 (the lowest two bits of the
pitch must be zero). The pitch, tiling, and data formats are used by the MC to calculate an address offset from an (x,
y) index pair, as described in Section 2.1.4. The format parameter is:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

base address

Bits Field Name Description

10:0 Reserved Reserved

31:11 base address The 2K-aligned address where the performance counter results will be
placed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

base address

Bits Field Name Description

10:0 Reserved Reserved

31:11 base address The 2K-aligned address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

format t pitch

Bits Field Name Description

1:0 Reserved Reserved

12:2 pitch The pitch in multiples of 4

15:13 Reserved Reserved

17:16 tiling Tiling format (possible values):
• 0 - LINEAR
• 1 - TILED
• 2 - LINEAR_INP_2X2
• 3 - TILED_INP_2X2
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

14 CTM Commands
Set Instruction Format Command
The set_inst_fmt command takes two parameters. The first parameter is the base address for the initial program
instruction in memory. The second contains pitch, tiling, and format information for the program data.

Parameter 0: base address

23:18 Reserved Reserved

26:24 format Data format (possible values):
• 0 - UINT16_1
• 1 - UINT8_4
• 2 - FLOAT32_1
• 3 - FLOAT32_2
• 4 - FLOAT32_4
• > 5 - Reserved

31:27 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

base address

Bits Field Name Description

10:0 Reserved Reserved

31:11 base address The 2K-aligned address at which the first program instruction is located.

Bits Field Name Description
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Memory Controller Unit Commands 15
Parameter 1: format

Set Input Format Command
The set_inp_fmt command takes four parameters. The first parameter is the index of the input to which the following
parameters apply; the second parameter is the base address for the given input in memory; the third contains its pitch,
tiling, and format information; and the fourth is the height of the input.

Parameter 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

format t pitch

Bits Field Name Description

1:0 Reserved Reserved

12:2 pitch The pitch in multiples of 4

15:13 Reserved Reserved

17:16 tiling Tiling format (possible values):
• 0 - LINEAR
• 1 - TILED
• 2 - LINEAR_INP_2X2
• 3 - TILED_INP_2X2

23:18 Reserved Reserved

26:24 format Data format (possible values):
• 0 - UINT16_1
• 1 - UINT8_4
• 2 - FLOAT32_1
• 3 - FLOAT32_2
• 4 - FLOAT32_4
• > 5 - Reserved

31:27 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

input

Bits Field Name Description

3:0 input The input to which this command applies.

31:4 Reserved Reserved
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

16 CTM Commands
Parameter 1:

Parameter 2:

Parameter 3:

Set Output Format Command
The set_out_fmt command takes four parameters. The first parameter is the index of the output to which the
following parameters apply; the second parameter is the base address for the given output in memory; the third
contains its pitch, tiling, and format information; and the fourth is the height of the given input.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

base address

Bits Field Name Description

10:0 Reserved Reserved

31:11 base address The 2K-aligned address at which the given input is located.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

format t pitch

Bits Field Name Description

1:0 Reserved Reserved

12:2 pitch The pitch in multiples of 4

15:13 Reserved Reserved

17:16 tiling Tiling format (possible values):
• 0 - LINEAR
• 1 - TILED
• 2 - LINEAR_INP_2X2
• 3 - TILED_INP_2X2

23:18 Reserved Reserved

26:24 format Data format (possible values):
• 0 - UINT16_1
• 1 - UINT8_4
• 2 - FLOAT32_1
• 3 - FLOAT32_2
• 4 - FLOAT32_4
• > 5 - Reserved

31:27 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

height

Bits Field Name Description

12:0 height The height

31:13 Reserved Reserved
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Memory Controller Unit Commands 17
Parameter 0:

Parameter 1:

Parameter 2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

out

Bits Field Name Description

1:0 output The output to which this command applies.

31:2 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

base address

Bits Field Name Description

10:0 Reserved Reserved

31:11 base address The 2K-aligned address at which the given output is located.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

format t pitch

Bits Field Name Description

1:0 Reserved Reserved

12:2 pitch The pitch in multiples of 4

15:13 Reserved Reserved

17:16 tiling Tiling format (possible values):
• 0 - LINEAR
• 1 - TILED
• 2 - LINEAR_INP_2X2
• 3 - TILED_INP_2X2

23:18 Reserved Reserved

26:24 format Data format (possible values):
• 0 - UINT16_1
• 1 - UINT8_4
• 2 - FLOAT32_1
• 3 - FLOAT32_2
• 4 - FLOAT32_4
• > 5 - Reserved

31:27 Reserved Reserved
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

18 CTM Commands
Parameter 3:

Set Conditional Output Format Command
The set_cond_out_fmt command takes three parameters. The first parameter is the base address for the conditional
output in memory; the second contains its pitch, tiling, and format information; and the third is the height of the
conditional output buffer.

Parameter 0:

Parameter 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description

12:0 height The height

31:13 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

base address

Bits Field Name Description

10:0 Reserved Reserved

31:11 base address The 2K-aligned address at which the conditional output is located.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

format t pitch

Bits Field Name Description

1:0 Reserved Reserved

12:2 pitch The pitch in multiples of 4

15:13 Reserved Reserved

17:16 tiling Tiling format (possible values):
• 0 - LINEAR
• 1 - TILED
• 2 - LINEAR_INP_2X2
• 3 - TILED_INP_2X2

23:18 Reserved Reserved

26:24 format Data format (possible values):
• 0 - UINT16_1
• 1 - UINT8_4
• 2 - FLOAT32_1
• 3 - FLOAT32_2
• 4 - FLOAT32_4
• > 5 - Reserved

31:27 Reserved Reserved
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Memory Controller Unit Commands 19
Parameter 2:

Set Constant Format Commands
The set_constf_fmt, set_consti_fmt, and set_constb_fmt commands all have the same form. They take two
parameters. The first parameter is the base address for the corresponding constants in memory. The second contains
the corresponding pitch, tiling, and format information.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

height

Bits Field Name Description

12:0 height The height

31:13 Reserved Reserved
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

20 CTM Commands
Parameter 0: base address

Parameter 1: format

Invalidate Cache Commands
The inv_inst_cache, inv_constf_cache, inv_consti_cache, inv_constb_cache, inv_inp_cache, and
inv_cond_out_cache commands all take one, reserved parameter. Upon receiving one of these commands, the MC
invalidates the corresponding cache as described in Section 2.1.4.

Parameter 0:

Flush Cache Commands
The flush_out_cache and flush_cond_out_cache commands all take one, reserved parameter. Upon receiving
one of these commands, the MC flushes the corresponding cache as described in Section 2.1.4.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

base address

Bits Field Name Description

10:0 Reserved Reserved

31:11 base address The 2K-aligned address at which the constants are located.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

format t pitch

Bits Field Name Description

1:0 Reserved Reserved

12:2 pitch The pitch in multiples of 4

15:13 Reserved Reserved

17:16 tiling Tiling format (possible values):
• 0 - LINEAR
• 1 - TILED
• 2 - LINEAR_INP_2X2
• 3 - TILED_INP_2X2

23:18 Reserved Reserved

26:24 format Data format (possible values):
• 0 - UINT16_1
• 1 - UINT8_4
• 2 - FLOAT32_1
• 3 - FLOAT32_2
• 4 - FLOAT32_4
• > 5 - Reserved

31:27 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description

31:0 Reserved Reserved
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Conditional Output Unit Commands 21
Parameter 0:

Set Output Write Mask Command
The set_out_mask command takes a single parameter, a bitfield specifying which channels in an output write
request are passed through to memory. If the bit is zero, the corresponding channel of the output data is ignored. The
specified mask is active until the next set_out_mask command is received.

Parameter 0: writemask

Set Conditional Output Mask Command
The set_cond_out_mask command takes a single parameter that specifies whether the conditional output result is
written to the conditional output buffer. If the mask is 1, then the output value is written to the buffer. If it is 0, then
the output value is not written to the buffer. The mask is maintained until the next set_cond_out_mask command.

Parameter 0: writemask

2.2.3 Conditional Output Unit Commands
This section contains all CTM commands for the Conditional Output Unit (CO).

Set Conditional Test Command
The set_cond_test command takes a single parameter, which specifies the test condition that the CO will perform.
This test is active until the next set_cond_test command is received.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description

31:0 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

c3 c2 c1 c0

Bits Field Name Description

0 channel 0 writemask If 1, then write channel 0 of output data upon request; if 0, do not write

1 channel 1 writemask If 1, then write channel 1 of output data upon request; if 0, do not write

2 channel 2 writemask If 1, then write channel 2 of output data upon request; if 0, do not write

3 channel 3 writemask If 1, then write channel 3 of output data upon request; if 0, do not write

31:4 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w

Bits Field Name Description

0 writemask If 1, then write the conditional value to the conditional output buffer; if 0, do
not write

31:1 Reserved Reserved
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

22 CTM Commands
Parameter 0: condition

Set Condition Location Command
The set_cond_loc command takes a single parameter that controls the conditional test return value for requests
either from the PE requests or the DPP. If the location is set to the DPP, the CO always returns true to the PE and
performs the conditional test for any DPP request. Conversely, if the location is set to the PE, the CO always returns
true to the DPP and performs the conditional test for any PE request. The location is maintained until the next
set_cond_loc command is received.

Parameter 0: loc

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

Bits Field Name Description

2:0 condition Test Condition:
• 0 - Never (always false)
• 1 - Less (true if client value is less than buffer value)
• 2 - Less or Equal (true if client value is less or equal to buffer value)
• 3 - Equal (true if client value equals buffer value)
• 4 - Greater or Equal (true if client value is greater or equal to buffer value)
• 5 - Greater (true if client value is greater than buffer value)
• 6 - Not Equal (true if client value is not equal to buffer value)
• 7 - Always (always true)

31:3 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l

Bits Field Name Description

0 loc Sets the location of the conditional test:
• 0 - DPP
• 1 -- PE

31:1 Reserved Reserved
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Chapter 3
DPP Array Instruction Set Architecture

This chapter describes the functional behavior of the ATI X1K Fragment Processor (X1K FP). This is intended for
low level-programmers who need to know what the hardware does, but not how it does it.

3.1 Instructions

There are 512 instruction slots. In the absence of flow control, programs will increment the program counter after
each instruction.

Each instruction can be one of four types:

• INST_TYPE_ALU - Arithmetic and Logic Unit instruction
• INST_TYPE_OUTPUT - Output instruction (with ALU functionality)
• INST_TYPE_FC - Flow Control instruction
• INST_TYPE_TEX - Texture instruction

ALU and OUTPUT instructions both have full RGB and Alpha math functionality. The only functional difference
between them is that ALU instructions can set the predicate bits, and OUTPUT instructions can write to the output
registers. There is no way to do both in the same instruction. Internally, the sequencer must treat instructions that
have potential outputs specially for scheduling. The last executed instruction of the X1K FP program must also be
an OUTPUT instruction, even if it's not outputting anything interesting.

The first OUTPUT instruction will reserve space in the output register fifo. This space is limited, therefore issuing an
OUTPUT earlier than necessary may cause threads to stall earlier than necessary. You should not set an ALU
instruction as type OUTPUT unless it is actually writing to an output register, or it is the last instruction of the
program.

Flow control instructions and texture instructions each have their own interpretation of the bits in the instruction word.

The last instruction must be an OUTPUT instruction (even if the output mask is zero), and should always wait for the
texture unit semaphore by setting the TEX_SEM_WAIT bit (see below). At the time of termination, the contents of
the output registers are sent to the render targets. Note that uncached writes (UMRT) occur immediately and do not
wait for program termination.

Updates to X1K FP code outside the currently active program are safe, and do not stall the pipeline. If you intend to
overwrite the active program, however, the pipe must be flushed so that fragments running the old program get out
before the update.

3.2 Instruction Words

INST_TYPE_ALU / INST_TYPE_OUTPUT (6 words):

• CMN_INST_*
• ALU_RGB_ADDR_*
• ALU_ALPHA_ADDR_*
• ALU_RGB_INST_*
• ALU_ALPHA_INST_*
• ALU_RGBA_INST_*
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

24 Instruction Words
INST_TYPE_FC (3 words):

• CMN_INST_*
• FC_INST_*
• FC_ADDR_*

INST_TYPE_TEX (4 words):

• CMN_INST_*
• TEX_INST_*
• TEX_ADDR_*
• TEX_ADDR_DXDY_*

The FC and TEX words overlap with the ALU/OUTPUT words in instruction memory. The unused memory
locations for FC and TEX are ignored by X1K FP; they may be left uninitialized, or set to zero, with no ill effect.

Within CMN_INST_*, the fields effective for each instruction type are indicated by Xs:

3.2.1 Synchronization of instruction streams
X1K FP allows you to freely intermix instructions of multiple types. It will process the three types (ALU/Output,
Texture, and FC) in parallel whenever possible. Instructions need to be synchronized when an instruction of one type
depends on the output of another type. The cases where explicit synchronization may be required are:

• TEX instruction dependent on ALU for source register or predicate. Synchronized with the ALU_WAIT bit.
• FC instruction dependent on ALU for predicate or ALU result. Synchronized with the ALU_WAIT bit.

ALU OUTPUT FC TEX

TYPE X X X X

TEX_SEM_WAIT X X X X

RGB_PRED_SEL X X X X

RGB_PRED_INV X X X X

ALPHA_PRED_SEL X X X

ALPHA_PRED_INV X X X

WRITE_INACTIVE X X X

LAST X X

NOP X X

RGB_WMASK X X X

ALPHA_WMASK X X X

RGB_OMASK X X

ALPHA_OMASK X X

RGB_CLAMP X X

ALPHA_CLAMP X X

ALU_RESULT_SEL X X

ALU_RESULT_OP X X

ALU_WAIT X X
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Sources 25
• ALU instruction dependent on TEX for lookup result. Synchronized using the texture semaphore.

A texture or FC instruction that uses a result computed by a prior ALU instruction should set the ALU_WAIT bit.
This forces processing for the thread to stall until pending ALU instructions are complete.

Note that a static FC instruction never needs to set ALU_WAIT, since it never depends on a result computed within
the program. Also, an ALU instruction never needs to set ALU_WAIT—dependencies amongst ALU instructions
are resolved internally.

The texture semaphore is used to synchronize the output of a texture instruction with a subsequent ALU or texture
instruction that uses that result. It is also used to synchronize uncached writes. The texture semaphore is described
in more detail below.

3.3 ALU Instructions

An ALU instruction actually consists of an RGB vector instruction and an Alpha scalar instruction.

There are only a few operations that only one or the other unit can compute, but in each case there is a special
instruction the other engine can use to copy the result.

3.3.1 Sources
Each instruction can specify the addresses for 6 different sources -- 3 RGB vectors and 3 Alpha scalars. Each source
can either come from one of 128 temporary registers (which can be modified during the program, and be different for
each processor), or from one of 256 constant registers (which can only be changed when a program is not running).
In addition, a source can be an inline constant. The loop variable (aL) may be added to any combination of source
addresses, but may not be added to an inline constant.

Each color register (temporary and constant) consists of a 3-component RGB vector and a scalar Alpha value.

Inline constants are unsigned floating-point values with 4 bits of exponent (with bias 7) and 3 bits mantissa. Inline
constants represent finite values only—there is no representation for NaN or infinity. Inline constants can express
denormal values though. Also, the bit pattern 0x0 represents 2^-10, rather than zero. Example values are shown
below:

You can obtain negative inline constants and the value zero using the input modifiers and swizzles, described below.

EXPONENT MANTISSA

2^-10 0x0 0x0

2^-9 0x0 0x1

2^-8 0x0 0x2

2^-7 0x0 0x4

2^-6 0x1 0x0

1 0x7 0x0

256 0xf 0x0

480 0xf 0x7
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

26 ALU Instructions
Each source is specified with three fields. Valid encodings of these fields are shown below (for source 0, in this
example):

Note that inline constants set the MSB of ADDR0 and clear ADDR0_CONST.

3.3.2 Presubtract
Each RGB and Alpha instruction has a presubtract operation, which does some extra math on incoming data from the
first or from the first and second sources. The available operations are:

• SRCP_OP_BIAS - 1-2*src0
• SRCP_OP_SUB - src1-src0
• SRCP_OP_ADD - src1+src0
• SRCP_OP_INV - 1-src0

The RGB presubtract happens on all three components in parallel. The Alpha presubtract is scalar.

If any presubtract result is used in the instruction, and one of the sources being used in a presubtract is written in the
previous instruction, and the previous instruction is an ALU or output instruction, a NOP needs to be inserted between
the two instructions. Do this by setting the NOP flag in the previous instruction, so the NOP does not consume an
instruction slot. This allows the HW the extra cycle necessary to resolve the dependencies involved in doing this extra
math (there are additional cases where NOP may need to be set, noted below).

Note:In these cases, the assembler could hide it.

NOP is never required if the previous instruction is a texture lookup.

3.3.3 Inputs
Each math operation has zero to three inputs. Each input can be configured to select a source and swizzle its channels.
There are fields to configure 6 inputs per instruction: 3 for RGB and 3 for Alpha. An instruction can read in at most
12 independent colour components (9 RGB components and 3 alpha components).

ADDR0[7] ADDR0[6:0] ADDR0_CONST ADDR0_REL

register N 0 N 0 0

register N + aL 0 N 0 1

constant N N / 128 N % 128 1 0

constant N + aL N / 128 N % 128 1 1

inline const X 1 X 0 0
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

The Operation 27
Select
Each input selects from src0, src1, src2, or the presubtract result ("srcp"). One can conceive of the selects assembling
a 4-component vector as seen below. The swizzle selects (see next section) determine which of the four values are
chosen to actually take part in the computations.

The RGB and alpha units each take three operands, A, B, and C. These operands are selected with the RGB_SEL_x
and ALPHA_SEL_x fields. Note that src0, src1 and src2 are fetched from a combination of the RGB and alpha source
addresses. If the RGB unit swizzles in an alpha component, the alpha component will always come from alpha_addr*.
Similarly, if the alpha unit swizzles in an RGB component, it will always come from rgb_addr*.

Swizzle
Each component of each input can specify one of seven values. Each component can select R, G, B, or A from the
selected source, or it can choose 0, 0.5, or 1. The RGB unit has 3 components, so there are three swizzle select fields
per input. The Alpha unit only has 1 swizzle select per input.

The RGB unit always uses the RGB selectors (RGB_SEL_x) and, except for one case noted below, the red
(RED_SWIZ_x), green (GREEN_SWIZ_x), and blue (BLUE_SWIZ_x) swizzle selects. The alpha unit always uses
the alpha selectors (ALPHA_SEL_x) and the alpha (ALPHA_SWIZ_x) swizzle selects.

DP4 is a special case in that it is an RGB operation which operates on 4 components instead of 3. The fourth input
component is configured with the Alpha's select (ALPHA_SEL_x) and swizzle (ALPHA_SWIZ_x). This is the only
case where the Alpha's swizzle has an effect on the RGB computation's input.

Input Modifier
Each input has a modifier applied to it. The modifier can be one of:

• IMOD_OFF - No modification
• IMOD_NEG - Negate
• IMOD_ABS - Take absolute value
• IMOD_NAB - Take negative of absolute value

3.3.4 The Operation
Following are the possible math operations the ALU can perform. The three inputs are denoted by A, B, and C.

Input Select/
Presubtract

4-component Vector

src0 = { rgb_addr0->r
{ rgb_addr0->g
{ rgb_addr0->b
{ alpha_addr0->a

src1 = { rgb_addr1->r
{ rgb_addr1->g
{ rgb_addr1->b
{ alpha_addr1->a

src2 = { rgb_addr2->r
{ rgb_addr2->g
{ rgb_addr2->b
{ alpha_addr2->a

srcp = { rgb_srcp_result.r = rgb_srcp_op(rgb_addr0->r, rgb_addr1->r)
{ rgb_srcp_result.g = rgb_srcp_op(rgb_addr0->g, rgb_addr1->g)
{ rgb_srcp_result.b = rgb_srcp_op(rgb_addr0->b, rgb_addr1->b)
{ alpha_srcp_result.a = alpha_srcp_op(alpha_addr0->a, alpha_addr1->a)
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

28 ALU Instructions
OP_RGB_SOP / OP_ALPHA_DP

• Get results from the other unit's unique ops. In the case of RGB_SOP, the result is replicated to all three
channels. RGB's unique ops all have scalar results, so ALPHA_DP simply copies that scalar result to its alpha
destination.

• RGB_SOP is only valid if the alpha operation is a transcendental operation: EX2, LN2, RCP, RSQ, SIN, COS.
ALPHA_DP is only valid if the RGB operation is a dot product: DP3, DP4, D2A.

OP_RGB_MAD / OP_ALPHA_MAD

• A * B + C

OP_RGB_MIN / OP_ALPHA_MIN

• A < B ? A : B

• Minimum of A and B.

OP_RGB_MAX / OP_ALPHA_MAX

• A >= B ? A : B

• Maximum of A and B.

OP_RGB_CND / OP_ALPHA_CND

• C > 0.5 ? A : B

OP_RGB_CMP / OP_ALPHA_CMP

• C >= 0 ? A : B

OP_RGB_FRC / OP_ALPHA_FRC

• A - floor(A)

• floor(A) is the largest integer value less than or equal to A.

OP_RGB_DP3

• A.r*B.r + A.g*B.g + A.b*B.b

• Results are broadcast to all 3 channels.
• Use OP_ALPHA_DP to get result into Alpha.

OP_RGB_DP4

• A.r*B.r + A.g*B.g + A.b*B.b + A.a*B.a

• Results are broadcast to all 3 channels.
• Use OP_ALPHA_DP to get result into Alpha.
• Note that ".a" actually comes from the alpha instruction's swizzle and select (see the section on swizzle above).

OP_RGB_D2A

• A.r*B.r + A.g*B.g + C.b

• Results are broadcast to all 3 channels.
• Use OP_ALPHA_DP to get result into Alpha.

OP_ALPHA_EX2

• 2 ^ A

• Use OP_RGB_SOP to get result into RGB.

OP_ALPHA_LN2

• log2(A)

• Use OP_RGB_SOP to get result into RGB.
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Instruction Modifiers 29
OP_ALPHA_RCP

• 1 / A

• Use OP_RGB_SOP to get result into RGB.

OP_ALPHA_RSQ

• 1 / squareRoot(A)

• Use OP_RGB_SOP to get result into RGB.

Note:The SM3 specification defines reciprocal square root as 1 / squareRoot(abs(A))—this can be
achieved by using the input modifier for A.

OP_ALPHA_SIN

• sin(A * 2pi)

• Use OP_RGB_SOP to get result into RGB.

OP_ALPHA_COS

• cos(A * 2pi)

• Use OP_RGB_SOP to get result into RGB.

3.3.5 Instruction Modifiers
Each instruction can have an output modifier applied to its result:

• OMOD_U1 - Multiply by 1
• OMOD_U2 - Multiply by 2
• OMOD_U4 - Multiply by 4
• OMOD_U8 - Multiply by 8
• OMOD_D2 - Divide by 2
• OMOD_D4 - Divide by 4
• OMOD_D8 - Divide by 8
• OMOD_DISABLED - No modification

Each instruction can also be optionally clamped to the range 0 to 1. This happens after the above output modifier.

Disabling the Output Modifier
The multiply/divide output modifiers all convert NaN values into a standardized NaN (0x7fffffff) and squash any
denormal values to plus or minus zero. For most ALU operations this is acceptable, however a MOV instruction
needs to preserve the source exactly. For this, you can disable the output modifier for the MIN, MAX, CMP and CND
instructions. With OMOD_DISABLED, the result is not modified at all; the value is neither multipled nor divided,
and clamping is not applied.

This allows a MOV to be implemented using any of the following instructions, with OMOD_DISABLED set:

• MIN(src, src)
• MAX(src, src)
• CND(src, src, 0)
• CMP(src, src, 0)

OMOD_DISABLED is not valid with any other ALU operation.
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

30 ALU Instructions
3.3.6 Writemasks
There are a number of writemasks for each instruction:

Flow control instructions only have one predicate select, using the RGB_PRED_SEL and RGB_PRED_INV fields.
ALU/Output instructions can use different predicate selects for the RGB (vector) computation and the alpha (scalar)
computation. For texture instructions, the RGB results from the texture unit will be influenced by RGB_PRED_SEL/
RGB_PRED_INV, and the alpha result from the texture unit will be influenced by the ALPHA_PRED_SEL/
ALPHA_PRED_INV fields.

3.3.7 Destination
The destination address refers to a temporary register. The loop variable (aL) may optionally be added to the address
before writing. The predicate select in RGB_PRED_SEL, RGB_PRED_INV, ALPHA_PRED_SEL, and
ALPHA_PRED_INV will be applied when writing to the destination.

3.3.8 Output
With OUTPUT instructions, the TARGET field indicates where the result of the instruction should be written. When
in cached write mode (the default mode), the following options are available:

• RNDR_TGT_A - Write to render target A register
• RNDR_TGT_B - Write to render target B register
• RNDR_TGT_C - Write to render target C register

Writemask Size Description

RGB_WMASK 3 bits Write R,G,B to register destination.

ALPHA_WMASK 1 bit Write A to register destination.

RGB_OMASK 3 bits Write R,G,B to output or to predicate bits.

ALPHA_OMASK 1 bit Write A to output or to predicate bits.

W_OMASK 1 bit Write A to W output.

WRITE_INACTIVE 1 bit If set, ignores flow control processor mask when writing. Affects ALU and
texture instructions. If in doubt, this bit should be cleared.

RGB_PRED_SEL 3 bits Sets one of six modes that specify which of the 4 predicate bit(s) to AND with
the RGB writemask (and output mask when applicable). One of:
• NONE - no predication
• RGBA - normal predication
• RRRR - replicate R predicate bit
• GGGG - replicate G predicate bit
• BBBB - replicate B predicate bit
• AAAA - replicate A predicate bit

RGB_PRED_INV 1 bit Inverts selected RGB predicate bit(s). Should be zero if RGB_PRED_SEL is
set to NONE.

ALPHA_PRED_SEL 3 bits Like RGB_PRED_SEL, but used to control predication for the alpha unit's
write mask.

ALPHA_PRED_INV 1 bit Inverts selected alpha unit predicate bit. Should be zero if ALPHA_PRED_SEL
is set to NONE.

IGNORE_UNCOVERED 1 bit If set, excludes uncovered processors (outside triangle or killed via TEXKILL)
from TEX lookups and flow control decisions. Affects texture and flow
control instructions. If in doubt, this bit should be cleared.

ALU_WMASK 1 bit If set, update the ALU result. Similar to the predicate write mask.
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Setting Predicate Bits 31
• RNDR_TGT_D - Write to render target D register

The OUT_FMT_* registers describe render targets A through D. The results are stored and the final value is sent out
when the program terminates. If a channel in an output target is written more than once, the final value written is what
will be sent out. The RGB and alpha unit may write to different targets in the same instruction.

The output may be predicated using PRED_SEL and PRED_INV.

You may also perform uncached output (or UMRT writes), which are sent out immediately, but you cannot perform
cached and uncached writes in the same program. The selection of the kind of program (a program that uses cached
writes or one that uses uncached writes) is selected by CTM based on information supplied with the program itself.

An output instruction in a UMRT program must either write all channels, or no channels. The green and blue channels
will be interpreted as the (X,Y) coordinates, the alpha channel must be zero, and the red channel contains the 32-bit
floating-point value to write. A UMRT program writes only one 32-bit value per output instruction.

The type of UMRT write performed is controlled by the RGB TARGET field (the alpha unit's TARGET field is
ignored). To perform a UMRT write, set the RGB TARGET field to one of the following values:

• RNDR_TGT_UMRT_SAME_IDX - Write using a shared index for all processors.
• RNDR_TGT_UMRT_SAME_IDX_TEX_SEM_ACQUIRE - and acquire texture semaphore to synchronize

reads.
• RNDR_TGT_UMRT_PER_PROCESSOR_IDX - Write using distinct index for each processor (at 1/4 speed).
• RNDR_TGT_UMRT_PER_PROCESSOR_IDX_TEX_SEM_ACQUIRE - and acquire texture semaphore to

synchronize reads.

If the program is reading back results written with uncached writes, then the program should use one of the
TEX_SEM_ACQUIRE choices to synchronize uncached writes and reads. Additional information on the texture
semaphore is given in the texture instruction overview, below.

3.3.9 Setting Predicate Bits
Each instruction may optionally set one or more predicate bits. ALU instructions (as opposed to OUTPUT
instructions) interpret the OMASK fields as a predicate writemask. The TARGET field determines when to set the
bits associated with each channel:

• PRED_OP_EQUAL - Set when channel is zero.
• PRED_OP_LESS - Set when channel is negative.
• PRED_OP_GREATER_EQUAL - Set when channel is non-negative.
• PRED_OP_NOT_EQUAL - Set when channel is non-zero.

The enumeration's names are based on the assumption that they will be primarily used after a subtraction of two
values. That's not the only possible use, of course. The RGB and alpha units may use different functions to set the
predicate in the same instruction.

In order to achieve the remaining common comparisons, <= and >, one can simply reverse the order of the values
being subtracted, or reverse both signs, and use the >= and < operations respectively.

You can simultaneously write to the predicate register and a temporary register, and you can perform a predicated
temporary register write if you are also writing the predicate register. However, the old value of the predicate will
only be applied to the temporary register's write mask; it will not be applied to the predicate write mask. In other
words, if the predicate is 0x7, your temporary write mask is 0xf and your predicate write mask is 0xf, you will write
only RGB components to the temporary register, but you will write to all 4 predicate bits.

If the instruction result is clamped, the comparison happens on the post-clamped result. If output modifier is disabled,
denormals may be compared -- denormals are equivalent to zero.
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

32 Texture Instructions
3.3.10 ALU Result
Every instruction has an "ALU result." In order to use it, an ALU instruction must write an ALU result, and it must
be consumed by the next flow control instruction. The ALU result is preserved across other ALU/texture instructions
that do not write a new ALU result, but is NOT preserved across flow control instructions; therefore the ALU result
must be consumed by the first flow control statement after it is written.

The ALU result is a single bit. The channel source for the ALU result is selected by the ALU_RESULT_SEL field:

• ALU_RESULT_SEL_RED
• ALU_RESULT_SEL_ALPHA

How to interpret the floating point result to set the ALU result bit is specified by the ALU_RESULT_OP field, which
is similar to the interpretation of the TARGET field for setting the predicate bits:

• ALU_RESULT_OP_EQUAL - Set when channel is zero
• ALU_RESULT_OP_LESS - Set when channel is negative
• ALU_RESULT_OP_GREATER_EQUAL - Set when channel is non-negative
• ALU_RESULT_OP_NOT_EQUAL - Set when channel is non-zero

The ALU instruction that updates the ALU result must set the ALU_WMASK bit.

If the instruction result is clamped, the comparison happens on the post-clamped result. If output modifier is disabled,
denormals may be compared—denormals are equivalent to zero.

3.4 Texture Instructions

Texture instructions are simpler than ALU or flow control instructions. Texture instructions have one destination
temporary address, 1 to 3 source temporary addresses, a sampler ID, and an opcode and control bits specifying how
to lookup the texture.

As with ALU temporary addresses, the loop variable (aL) may be added to any texture temporary address (source and
destination). Texture source addresses allow arbitrary swizzles from RGBA to STRQ coordinate space, and the
RGBA result from the texture unit may also be swizzled. Unlike with ALU instructions, the texture swizzles cannot
be used to select constant inputs (0, 0.5, 1). Texture source addresses always read from the temporary registers; they
cannot read from the constant bank.

Texture instructions feature a texture semaphore mechanism to synchronize texture lookup with instructions using the
result of the lookup. See below for more information.

You may choose to limit which channels of a texture lookup are written by using the write masks RGB_WMASK and
ALPHA_WMASK. These write masks may be predicated; the RGB results from the texture unit are predicated with
RGB_PRED_SEL and RGB_PRED_INV, while the alpha result from the texture unit is predicated with
ALPHA_PRED_SEL and ALPHA_PRED_INV.

Texture instructions have an UNSCALED bit that control whether the texture coordinates are scaled by the texture
dimensions before lookup. In typical usage, this bit is cleared for normal texture lookups which supply coordinates in
the range [0.0, 1.0], and set for texture lookups which supply coordinates that are prescaled to the texture dimensions.
Uncached reads (used for UMRT) should set the UNSCALED bit: the coordinates supplied to the program are
prescaled, and the index coordinate should always be an integer value.
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Operations 33
3.4.1 Operations
There are five texture operations available.

3.4.2 Semaphore
The semaphore is used to synchronize texture lookups with their subsequent use in the program. It also serves a
second purpose in uncached write mode, where it synchronizes uncached writes with subsequent uncached reads
through the texture unit.

Each texture instruction has a bit, TEX_SEM_ACQUIRE, specifying whether it should hold the texture semaphore
until the looked-up data comes back and is written to the destination temporary register. All program instructions have
another semaphore bit, TEX_SEM_WAIT, that specifies whether to wait on the semaphore so its (dependent) source
data is up to date. You may take advantage of the texture semaphore to perform various independent computations
while waiting on the texture operation to complete.

Hardware disallows more than one ACQUIRE operation at a time, so if you set TEX_SEM_ACQUIRE on a lookup
or uncached write, you must also set TEX_SEM_WAIT for that instruction. WAIT has no cost if there are no
outstanding ACQUIRE operations. For an instruction with TEX_SEM_WAIT and TEX_SEM_ACQUIRE both set,
the wait happens first.

There is only one texture semaphore, however you may use it to protect multiple texture lookups, as long as the
lookups are themselves independent. When a texture instruction sets TEX_SEM_ACQUIRE, the texture unit ensures
that that particular lookup, and all prior lookups, have completed before releasing the semaphore. Therefore, to protect
several texture lookups, you may set TEX_SEM_ACQUIRE only on the last texture lookup, and set
TEX_SEM_WAIT on the first instruction that uses any of the results. This example illustrates the usage:

Texture Option Description

TEX_INST_NOP Perform no operation. The source addresses are ignored, and nothing is written to
the destination address. A texture NOP may acquire the texture semaphore, so
NOP can be used for synchronization purposes.

TEX_INST_LOOKUP A standard texture lookup. Reads the coordinates from SRC_ADDR and writes
the results of the lookup to DST_ADDR.

TEX_INST_KILL_LT_0 Kill the processor if any components in SRC_ADDR are less than zero. Note that
the source swizzles are ignored in this case; if you want to limit which channels
are examined, you may use the write masks in WMASK_RGB, WMASK_ALPHA,
and/or predication. Nothing is written to the destination address.

TEX_INST_LOOKUP_PROJ Lookup a projected texture. Q is used for the projective divide.

TEX_INST_LOOKUP_UNCACHED Perform an uncached read. This mechanism is used to retrieve data that was
written using uncached writes, either in this program or by a previous program. If
reading data written by this program, the texture semaphore mechanism must be
used on the uncached write instructions. If reading data written by a previous
program, it may be necessary to flush the pipe. Typically the UNSCALED bit
should be set for an uncached read.

INSTRUCTION TEX_SEM_WAIT TEX_SEM_ACQUIRE

0: r4 = TEXLD(s0, r1) 0 0

1: r5 = TEXLD(s1, r2) 0 0

2: r6 = TEXLD(s2, r3) 1 1

3: r1 = r1 + 1 0
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

34 Flow Control
In the above example, note that instruction 2 waits for the semaphore to ensure the semaphore is available before
acquiring it.

Using TEX_SEM_ACQUIRE on an uncached write instruction is very similar to using TEX_SEM_ACQUIRE on a
texture lookup. If you are performing uncached reads and writes in the same program, you should use one of the
TEX_SEM_ACQUIRE options on the last uncached write before an uncached read, and you should use
TEX_SEM_WAIT on the uncached read. The uncached write mechanism will not release the semaphore until that
particular uncached write, and all prior uncached writes, are complete.

Remember that the last instruction of the program must set TEX_SEM_WAIT, to ensure that the texture unit is ready
to process the next fragment. It is invalid to terminate the program while holding the texture semaphore, either from
a texture lookup or from an uncached write.

Warning: see errata section at the end for a known issue with texture semaphores.

3.5 Flow Control

Each flow control instruction is essentially a conditional jump. Various optional stack operations allow all the
different kinds of traditional flow control statements. In particular, flow control instructions allow branch statements
(if/else/endif blocks), loop statements (with an optional loop register, aL), and subroutine calls. Optimizers may be
able to combine these basic types of instructions, and utilize more esoteric flow control modes.

HW supports two flow control modes, "partial" and "full". Partial flow control mode enables twice as many contexts
as full mode, but partial flow control mode has a limited nesting depth of branch statements, and does not support
loops or subroutine calls. Partial flow control mode should be used unless the program requires branch statements
nested more than 6 deep, or the program requires loops or subroutines.

In CTM, partial or full flow control mode is selected based on information supplied as part of the program itself. The
application has no control over the selection (except via the program it loads).

See the Fields section below for descriptions of fields that affect the jump condition and the various flow control
stacks. Following that are the values of those fields for the most common types of flow control operations.

3.5.1 Dynamic Flow Control
As the X1K DPP is a SIMD engine, applying the same instruction to a group of processors, dynamic flow control
must be implemented with processor masks. If a processor wants to take a jump because it failed an IF condition, but
its neighbors in the processor group don't want to jump, the processor must be masked off for a time until that branch
of the IF statement is completed. Only if all processors fail the IF condition would the program counter actually be
changed. Conversely, if some processors don't want to jump to a subroutine, they must be masked off for the entire
subroutine. Only if none of the processors want to jump would the call be skipped. A break statement within a loop
masks off passing processors until the loop is complete, and the program counter is only changed if all processors
want to jump.

These processor masks are organized into stacks so flow control blocks may be nested. The operations on these stacks
are encoded in the flow control instructions as flags, instead of having one set of opcodes which hard-wire the stack
behavior. This orthogonality allows for more creative control of the program behavior, and provides opportunity for
optimizations in programs that use a lot of flow control.

4: r2 = r2 + 1 0

5: r3 = r3 + 1 0

6: r4 = r4 + 1 1

INSTRUCTION TEX_SEM_WAIT TEX_SEM_ACQUIRE
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Stacks and Branch Counters 35
Jump conditions can be based off of a boolean constant, the result of the previous ALU operation, and/or a predicate
bit. Booleans are constant across all processors, so dynamic flow control is only achieved with predicates and
conditionals (ALU result). Any ALU instruction can specify whether to write the ALU result and what channel
supplies the data for the result. The ALU result is only valid until another ALU instruction writes to the result, or a
flow control instruction is encountered. The predicate bits can be set anywhere and are preserved across flow control
instructions, but there are only 4 of them.

Flow control predication cannot be per-channel. One of the replicate swizzles must be used for predication of flow
control instructions (all other types of instructions can be predicated per channel). Flow control instructions use the
RGB_PRED_SEL and RGB_PRED_INV fields to compute the predicate.

3.5.2 Stacks and Branch Counters
The HW maintains two separate stacks for flow control:

• Address Stack - Purely an address stack. No other state is maintained. Popping the address stack overrides the
instruction address field of the flow control instruction. The address stack will only be modified if the flow
control instruction decides to jump.

• Loop Stack - Stores an internal iteration count, loop variable (aL), and a processor mask per frame. The only
way to access the iteration count is with the LOOP/ENDLOOP and REP/ENDREP operations. The only way to
alter the aL variable is with the LOOP/ENDLOOP ops. The only way to read the aL variable is with relative
addressing. The only way to alter the processor mask is with the BREAK or CONTINUE instruction.

Each stack's size is dependent on whether the program is in partial or full flow control mode. Stack overflows and
underflows produce undefined behaviour in the hardware. The stack sizes are:

The loop stack is maintained in such a way that an inner REP block will continue to see the loop variable from an
outer LOOP block. Nested LOOP blocks will shadow the loop variable. The loop variable is not valid if you are not
in at least one LOOP block.

In addition to the two stacks, hardware maintains an Active Bit and a Branch Counter for each processor that indicate
whether the processor is active and, if it was disabled by a conditional statement (if, else), how long before it can be
reactivated. If the active bit is unset, the processor is inactive and the branch counter indicates the number of
conditional blocks we must exit before the processor can be activated again. The maximum value of this counter is
dependent on whether the program is in partial or full flow control mode. The limits (which determine maximum safe
nesting depth) are:

The branch counter can be incremented and decremented directly by any flow control instruction based on whether
the processor agrees with the jump decision. Manipulating the branch counter may affect the active bit. Incrementing
the counter on an active processor will disable the processor by clearing the active bit, and set the branch counter to
zero. Decrementing the counter of an inactive processor to a negative value will set the active bit, reactivating the
processor. The branch counter is ignored in hardware while the active bit is set.

Processors disabled by looping statements (BREAKLOOP, BREAKREP, and CONTINUE) are also tracked with
"loop inactive" counters, however unlike the branch counter, the loop counters cannot be manipulated directly.

PARTIAL FULL

Loop stack n/a 4

Address stack n/a 4

PARTIAL FULL

Branch counter 0..3 0..31

Maximum depth 4 32
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

36 Flow Control
Since only conditional (if, else) and loop statements maintain active processor masks, to call a function based on a
condition requires the program to use the branch counters on CALL and RETURN so the processor active mask will
be updated on the conditional call. If you know ahead of time that *all* calls to a particular subroutine will be
unconditional calls, you can omit the branch counter manipulation on that subroutine's return and on any calls to that
subroutine. The benefit of this is unclear, unless you are nearing the upper limit on the branch counter.

Returns within dynamic branches and/or loops (nested in the subroutine) are not supported. A return can be made
conditional (by incremeneting the branch stack counter on stay), but the hardware does not support returning within
other conditional blocks that might partially mask it. If a branch is entirely static (based on a constant boolean), you
may put a return within a branch (just get the branch counter decrement right). This cannot be done inside loops,
however.

3.5.3 Fields

Fields Controlling Conditions on the Jump
JUMP_FUNC - 2x2x2 table indicating when to jump.

• Bit 0 = Jump when (!alu_result && !predicate && !boolean).
• Bit 1 = Jump when (!alu_result && !predicate && boolean).
• Bit 2 = Jump when (!alu_result && predicate && !boolean).
• Bit 3 = Jump when (!alu_result && predicate && boolean).
• Bit 4 = Jump when (alu_result && !predicate && !boolean).
• Bit 5 = Jump when (alu_result && !predicate && boolean).
• Bit 6 = Jump when (alu_result && predicate && !boolean).
• Bit 7 = Jump when (alu_result && predicate && boolean).

Common JUMP_FUNC values:

• 0x00 = Never jump
• 0x0f = Jump iff alu_result is false.
• 0x33 = Jump iff predicate is false.
• 0x55 = Jump iff boolean is false.
• 0xaa = Jump iff boolean is true.
• 0xcc = Jump iff predicate is true.
• 0xf0 = Jump iff alu_result is true.
• 0xff = Always jump

JUMP_ANY - How to treat partially passing groups of processors.

• false = Don't jump unless all processors want to jump
• true = Jump if at least one active processor wants to jump

When JUMP_ANY is false, the instruction behaves like a universal quantifier, and will decide to jump if there are no
active processors. When JUMP_ANY is true, the instruction behaves like an existential quantifier, and will never
decide to jump if there are no active processors. Looping statements may override the jump decision made by the
processors based on the loop counter.

Fields Controlling Optional Stack Operation
OP - Loop Stack Operations.

• FC_OP_JUMP = None
• FC_OP_LOOP = Initialize counter and aL, and push loop stack if stay
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Fields 37
• FC_OP_ENDLOOP = Increment counter and aL if jump, else pop loop stack
• FC_OP_REP = Initialize counter, and push loop stack if stay
• FC_OP_ENDREP = Increment counter if jump, else pop loop stack
• FC_OP_BREAKLOOP = Pop loop stack if jump
• FC_OP_BREAKREP = Pop loop stack if jump
• FC_OP_CONTINUE = Disable processors until end of current loop

You should use FC_OP_BREAKLOOP if the innermost looping construct is LOOP, and FC_OP_BREAKREP if the
innermost looping construct is REP.

A_OP - Address Stack Operations.

• FC_A_OP_NONE = None
• FC_A_OP_POP = Pop address stack if jump (overrides JUMP_ADDR given in instruction)
• FC_A_OP_PUSH = Push address stack if jump

B_OP0 - Branch stack Operations if stay.

• FC_B_OP_NONE = None
• FC_B_OP_DECR = Decrement branch counter for inactive processors by amount in B_POP_CNT. Activate

processors which go negative.
• FC_B_OP_INCR = Increment branch counter for inactive processors by 1. Deactivate processors which

disagree with the jump decision (by deciding to jump) and set their branch counter to 0.

B_OP1 - Branch stack Operations if jump.

• FC_B_OP_NONE = None
• FC_B_OP_DECR = Decrement branch counter for inactive processors by amount in B_POP_CNT. Activate

processors which go negative.
• FC_B_OP_INCR = Increment branch counter for inactive processors by 1. Deactivate processors which

disagree with the jump decision (by deciding not to jump) and set their branch counter to 0.

B_POP_CNT - Branch Stack Pop Count.

How much to decrement the branch counters by when appropriate B_OP* field says to decrement.

B_ELSE - Branch Stack Else

• false = None
• true = Activate processors whose branch count is zero (processors deactivated by the innermost cond itional

block), and deactivate all processors that were active.
Special Cases

When the iteration count is zero, LOOP/REP ignore JUMP_FUNC and jump.

When the iteration count is zero, ENDLOOP/ENDREP ignore JUMP_FUNC and don't jump.

Any processors deactivated by B_ELSE "want to jump" regardless of JUMP_FUNC.

Any processors deactivated by a branching statement (if, else) will inhibit a decision to jump by a BREAK or
CONTINUE statement.

Any processors deactivated by a CONTINUE statement will inhibit a decision to jump by a BREAK statement; they
will not inhibit a decision to jump by another CONTINUE statement.

Processors deactivated by other flow control are indifferent to the decision to jump by a BREAK or CONTINUE
statement.

Address Fields
BOOL_ADDR - Which of 32 constant booleans to use for jump condition.
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

38 Flow Control
INT_ADDR - Which of 32 constant integers to use for loop initialization (the red channel is used for iteration count,
green for aL initialization, and blue for aL increment).

JUMP_ADDR - Which instruction to jump to if conditions pass.

JUMP_GLOBAL -- Whether JUMP_ADDR is global, or if OFFSET_ADDR should be added to JUMP_ADDR.

3.5.4 Common Flow Control Statements
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Common Flow Control Statements 39
 JUMP_FUNC A_OP B_POP_CNT
 | JUMP_ANY | B_OP0 | B_ELSE

 | | OP | | B_OP1 | | JUMP_ADDR

 | | | | | | | | |

IF b 0x55 0 JUMP NONE NONE NONE 0 0 ELSE+1

ELSE 0xff 0 JUMP NONE NONE NONE 0 0 ENDIF

ENDIF

IF p 0x33 0 JUMP NONE INCR INCR 0 0 ELSE+1

ELSE 0x00 0 JUMP NONE NONE DECR 1 1 ENDIF+1
ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

IF c 0x0f 0 JUMP NONE INCR INCR 0 0 ELSE+1
ELSE 0x00 0 JUMP NONE NONE DECR 1 1 ENDIF+1

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

IF b 0x55 0 JUMP NONE NONE NONE 0 0 ENDIF

ENDIF

IF p 0x33 0 JUMP NONE INCR NONE 0 0 ENDIF+1

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

IF c 0x0f 0 JUMP NONE INCR NONE 0 0 ENDIF+1

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

LOOP 0x00 0 LOOP NONE NONE NONE 0 0 ENDLOOP+1

ENDLOOP 0xff 1 ENDLOOP NONE NONE NONE 0 0 LOOP+1

REP 0x00 0 REP NONE NONE NONE 0 0 ENDREP+1

ENDREP 0xff 1 ENDREP NONE NONE NONE 0 0 REP+1

BREAK 0xff 0 BREAK NONE NONE DECR n 0 END+1

BREAK b 0xaa 0 BREAK NONE NONE DECR n 0 END+1

BREAK p 0xcc 0 BREAK NONE NONE DECR n 0 END+1
BREAK c 0xf0 0 BREAK NONE NONE DECR n 0 END+1

CONTINUE 0xff 0 CONTINUE NONE NONE DECR n 0 END

CALL 0xff 1 JUMP PUSH NONE INCR 0 0 Subroutine

CALL b 0xaa 1 JUMP PUSH NONE INCR 0 0 Subroutine
CALL p 0xcc 1 JUMP PUSH NONE INCR 0 0 Subroutine

CALL c 0xf0 1 JUMP PUSH NONE INCR 0 0 Subroutine

RETURN 0xff 0 JUMP POP NONE DECR 1 0 0

• n indicates how many branch stack frames the BREAK is inside within the current loop.
• Lines with no fields filled out indicate no FC instruction is necessary in that spot.
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

40 Note on Floating Point
3.5.5 Optimizations
Clearly, not all the possible combinations are explored above. The flexibility of the flow control instruction allows
for more creative flow control operations, or (more likely) optimizations.

One of the easiest optimizations makes use of the B_POP_CNT to merge consecutive ENDIF statements:

 JUMP_FUNC A_OP B_POP_CNT

 | JUMP_ANY | B_OP0 | B_ELSE

 | | OP | | B_OP1 | | JUMP_ADDR
 | | | | | | | | |

IF c 0x0f 0 JUMP NONE INCR NONE 0 0 ENDIF_0+1
[...]

IF c 0x0f 0 JUMP NONE INCR NONE 0 0 ENDIF_1+1

[...]
IF c 0x0f 0 JUMP NONE INCR NONE 0 0 ENDIF_2+1

[...]

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0
ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

Becomes

IF c 0x0f 0 JUMP NONE INCR NONE 0 0 ENDIF+1

[...]
IF c 0x0f 0 JUMP NONE INCR DECR 1 0 ENDIF+1

[...]

IF c 0x0f 0 JUMP NONE INCR DECR 2 0 ENDIF+1
[...]

ENDIF

ENDIF
ENDIF 0x00 1 JUMP NONE DECR NONE 3 0 0

3.6 Note on Floating Point

X1K FP is designed to be compliant with the Shader Model 3, which does not officially support IEEE special values
(denormal, infinity, NaN), and allows for leniency in various corner cases.

X1K FP strives to provide a more complete IEEE floating point implementation. X1K FP supports the IEEE 32-bit
floating point format, with 23 bits mantissa, 8 bits biased exponent (bias 127), and 1 bit sign. The X1K FP also
supports the special IEEE values (denormal, infinity, NaN), but there are some important caveats in the
implementation which are noted below. There is no distinction between an sNaN and a qNaN.

3.6.1 Pervasive Deviations from IEEE
The most pervasive caveat is that denormals are flushed to an appropriately signed zero throughout X1K FP. There
is no gradual underflow, and identities are not preserved for denormal values. This will be apparent in comparison
operations where a denormal is treated as equivalent to zero.
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

ALU Non-Transcendental Floating Point 41
Also pervasive, the internal rounding mode is not configurable and is not exact to the IEEE standard. It could best be
said that rounding is random; operations in and near X1K FP round with differing standards. Most ALU operations
are accurate to within one bit on each input; transcendental functions have larger tolerances.

The lack of separable multiply and add instructions has consequences on rounding and sign preservation; when using
MAD to perform only a multiply or addition, keep in mind that the other operation may influence the result despite
apparent identities. For example, the obvious instructions to use for moving a value from one register to another both
utilize MAD, either with the additive identity "0 * 0 + r1", or a combination of additive and multiplicative identities,
"r0 * 1 + 0". Neither these instructions will correctly copy -0.0, because the adder cannot generate -0.0 except with
two negative inputs. In this case, a more accurate move instruction would be "-0 * 0 + r1". (the ideal MOV instruction
is described below).

X1K FP only supports comparisons against zero (predication, ALU result, and CMP) and +0.5 (CND), and this has
consequences for implementing a general compare function with special values. It is tempting to implement a general
comparison between values A and B by subtracting the results, but this will not have the desired effect for special
values. In IEEE, an infinite value is equivalent to itself, but NaN is never equivalent to NaN. Yet (infinity - infinity)
= (NaN - NaN) = NaN, and the results are indistinguishable. The limited operator set further complicates issues, since
(A > B) is not equivalent to !(A <= B) when either input is NaN.

The behaviour for CMP and CND is described below. When using the predicate comparison operators, the following
hold for special values:

Denormals compare as equivalent to zero. Note that the only way a denormal may be involved in a comparison for
predicate/alu result is if the output modifier is disabled with OMOD_DISABLED.

3.6.2 ALU Non-Transcendental Floating Point
Non-transcendental ALU operations maintain extra precision to represent computations where an intermediate result
exceeds IEEE's finite range. For example, if a MAD generates a result outside the finite range, but the output modifier
brings the value back into range, the ALU will generate a finite value, not infinity.

The ALU accepts denormal values, but denormals are flushed to zero, preserving sign. It is possible for a
multiplicative output modifier to bring a denormal intermediate result into the normal range; in this case, the ALU
will generate a normal nonzero value.

The ALU MAD operation, which many ALU operations are based on, follows standard IEEE rules when handling
special input values, for example:

VALUE X<0 X>=0 X==0 X!=0

+0.0 0 1 1 0

-0.0 0 1 1 0

+Inf 0 1 0 1

-Inf 1 0 0 1

NaN 0 0 0 1

OPERATION RESULT NOTES

x * NaN NaN x is any value.

0.0 * Inf NaN

Inf * Inf Inf

Inf * -Inf -Inf

0.0 * -0.0 -0.0
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

42 Note on Floating Point
Dot products may lose precision in cases where the values to be added differ greatly in magnitude. For example, if
the two largest values to be added cancel exactly, and the next-largest value has a magnitude smaller by a factor of
2^25 or more, X1K FP will emit +0.0 rather than the sum of the two remaining components. IEEE is silent on the
behaviour of such fused operations, and it seems unlikely that this condition will manifest very often.

MIN and MAX operations return the second argument if either input is NaN (this is consistent with IEEE and SM3
specifications); infinite values compare as usual. If both inputs are +-0.0, MIN and MAX will return the second input
(consistent with IEEE and the SM3 spec)—as a result, MIN(+0, -0) == -0, and MIN(-0, +0) == +0.

CND and CMP operations return the second argument if either input is NaN; infinite values compare as usual. As
with the predicate compare operators, +0.0 and -0.0 are both "equal" to 0.

MIN, MAX, CND, and CMP are guaranteed to return one of their first two arguments. If you use
OMOD_DISABLED as well, then you will get a bit-exact representation of one of the first two arguments.

ALU operations usually enable the output modifier, which in turn standardizes NaN values and flushes denormal
results to zero. A MOV instruction which preserves the source bits may be implemented by setting
OMOD_DISABLED for the instruction and using the MAX(src, src) instruction. The output modifier cannot be
disabled for a saturated MOV (MOV with clamping enabled).

3.6.3 ALU Transcendental Floating Point
In X1K FP, transcendental operations are EX2, LN2, RCP, RSQ, SIN, and COS (mathematically speaking, one of
these functions does not belong). Transcendentals do not maintain extra internal precision; as a result, if the result of
the transcendental operation exceeds the IEEE finite range, the ALU will generate infinity even if the output modifier
would bring the result back into range. Similarly if the result is denormal, the ALU will generate a pure zero
(preserving sign) even if the output modifier would bring the result back into the normal range.

Special values are computed as shown in the following table:

Note:* For RSQ, recall that the square root occurs first. IEEE specifies sqrt(-0.0) -> -0.0; the X1K FP deviates
from this.

x + NaN NaN x is any value.

Inf + -Inf NaN

Inf + Inf Inf

Inf + -1.0 Inf

0.0 + -0.0 0.0

-0.0 + -0.0 -0.0

OPERATION RESULT NOTES

INPUT EX2 LN2 RCP RSQ SIN COS

+0.0 +1.0 -Inf +Inf +Inf +0.0 +1.0

-0.0 +1.0 -Inf -Inf +Inf * -0.0 +1.0

+Inf +Inf +Inf +0.0 +0.0 NaN NaN

-Inf +0.0 NaN -0.0 NaN NaN NaN

 NaN NaN NaN NaN NaN NaN NaN
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Texture Floating Point 43
3.6.4 Texture Floating Point
Projected texture coordinates are processed in the X1K FP block before being sent to the texture unit. The texture
unit does not accept NaN, so NaN coordinates are converted to +infinity before being sent to the texture unit. As with
the ALU, denormal inputs and denormal results are converted to pure zero, preserving sign.

The multiplier used for projection and cubemapping does not follow IEEE rules when handling special values. This
will become apparent only when you attempt to project or cubemap a coordinate that contains an infinite or NaN
component.

You should use caution when generating very large values for use as coordinates in a texture lookup. These values
may generate infinite values when scaled by the texture dimensions or projected.

3.7 Errata

There is a problem with texture semaphores: if an instruction that does a wait on a texture semaphore is preceeded by
a flow-control instruction, that second instruction may execute before the texture semaphore has returned.

As a workaround, always do a tex sem wait on a flow-control instruction if any possible next instruction contains a
tex sem wait (including branch and call/return). You should also remove the tex sem wait on the other instructions
(unless you are in full-flow control mode) or you risk waiting on a younger thread, which shouldn't cause a deadlock
but could be bad for performance. In full-flow control mode, you can leave the tex sem wait bit set for those other
instructions.
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

44 Errata
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Chapter 4
DPP Application Binary Interface

The ATI Data Parallel Processor (DPP) Array is the collection of floating-point processors found in ATI graphics
hardware. The processors execute programs encoded in an ISA described in the previous chapter. This chapter
specifies how executable programs must be packaged in order to run unmodified on the DPP Array, via the program
loader embedded in CTM.

4.1 Executable Files

The DPP executable file format must be the Executable and Linking Format (ELF). ELF is specified as a component
of the Tool Interface Standard (TIS), and its documentation is publicly available. This document assumes familiarity
with ELF, and details only the portions of the ELF file that are specific to loading programs for the DPP.

4.1.1 File Format
The top-level layout of an executable file object (the "Execution View" of the ELF format) is given in the following
figure:

4.1.2 ELF Header
DPP-specific fields in the ELF Header are:

ELF Header

Program Header

Segment 1

…

Segment n

Section Header Table
(Optional)

Field Assigned Value Description

e_ident[EI_CLASS] ELFCLASS32 32-bit executable object.

e_ident[EI_DATA] ELFDATA2LSB Data is little endian.

e_ident[EI_OSABI] ELFOSABI_ATI The ABI for ATI DPP devices (current value is 98).

e_ident[EI_ABIVERSION] 1 ABI version number.

e_type ET_EXEC The object contains an executable file.

e_machine EM_ATI_R5XX Specifies the ATI X1k series encoding (current value is 122).

e_entry 0 No defined entry point virtual address.

e_flags EF_ATI_DPP Required processor specific flag (current value is 1).
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

46 Executable Files
4.1.3 Program Code Sections
The program executable code is contained within a single .text section of the ELF file with a program header element
of type PT_LOAD:

4.1.4 Program Loading
A binary object to be loaded for execution contains information in addition to the instruction code found in the .text
section of its binary. This information is encoded in seven notes encapsulated in one or more sections of type
SHT_NOTE with program header elements of type PT_NOTE. This information is used to ensure the validity of the
execution environment in CTM with respect to the program being loaded.

The notes are summarized in the following table, and described in detail in the subsections below:

Program Information Note
The Program Information Note is summarized in the following tables. If the object file does not contain a program
information note, the object is ill conditioned and will fail to load:

The DPP Program Information structure (dpp_proginfo) found in the Program Information Note is:

Name Type Flags Section Contents

text SHT_PROGBITS SHF_ALLOC
SHF_EXECINSTR

The executable instructions of a program.

Note Description

Program Information Ancillary information used by the loader to set up program.

Inputs Which inputs are referenced in the program.

Outputs Which outputs are referenced in the program.

Conditional Output Whether a conditional output value is written.

Float32 Constants Which FLOAT32 constants are referenced in the program.

Int32 Constants Which INT32 constants are referenced in the program.

Early Program Exit Whether the program contains an early exit command.

Field Size in Bytes Value

namesz 4 8

descsz 4 sizeof(dpp_proginfo)

type 4 ELF_NOTE_ATI_PROGINFO (current value is 1)

name 8 ELF_NOTE_ATI (current value is "ATI DPP")

desc sizeof(dpp_proginfo) The DPP Program Information structure (see below).

Field Type Value Description

Reserved Elf32_Word 0x00000001 Reserved

FG_DEPTH_SRC Elf32_Word per-program A 1 in bit 0 specifies conditional value is exported.

US_CONFIG Elf32_Word per-program A 1 in bit 0 specifies that output writes are uncached.

US_PIXSIZE Elf32_Word per-program Largest register used in the program

US_FC_CTRL Elf32_Word per-program A 1 in bit 31 specifies full flow control functionality
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Program Loading 47
Inputs Note
The Inputs Note is summarized in the following table. If an object file does not contain an inputs note, then the
program loader acts as if the program has no inputs:

US_CODE_ADDR Elf32_Word per-program Lower 16 bits is instruction where program execution begins.
Upper 16 bits is instruction after which to halt

US_CODE_RANGE Elf32_Word per-program Upper 16 bits is (INST_CNT - 1); lower 16 bits is 0.

Reserved Elf32_Word 0x000000c0 Reserved

Reserved Elf32_Word 0x00020000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

Reserved Elf32_Word 0x00000000 Reserved

INSTR_CNT Elf32_Word per-program Number of instructions in program

Field Size in Bytes Value

namesz 4 8

descsz 4 4 * ninputs

type 4 ELF_NOTE_ATI_INPUTS (current value is 2)

name 8 ELF_NOTE_ATI (current value is "ATI DPP")

desc 4 * ninputs List of the input indices used in the program.

Field Type Value Description
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

48 Executable Files
Outputs Note
The Outputs Note is summarized in the following table. If an object file does not contain an outputs note, then the
program loader acts as if the program has no outputs:

Conditional Output Note
The Conditional Output Note is summarized in the following table. If an object file does not contain a conditional
output note, then the program loader acts as if the program has no conditional output:

Float32 Constants Note
The Float32 Note is summarized in the following table. If an object file does not contain a Float32 constants note,
then the program loader acts as if the program has no float32 constant references:

Int32 Constants Note
The Int32 Constants Note is summarized in the following table. If an object file does not contain an Int32 constants
note, then the program loader acts as if the program has no int32 constant references:

Field Size in Bytes Value

namesz 4 8

descsz 4 4 * noutputs

type 4 ELF_NOTE_ATI_OUTPUTS (current value is 3)

name 8 ELF_NOTE_ATI (current value is "ATI DPP")

desc 4 * noutputs List of the output indices used in the program.

Field Size in Bytes Value

namesz 4 8

descsz 4 4

type 4 ELF_NOTE_ATI_CONDOUT (current value is 4)

name 8 ELF_NOTE_ATI (current value is "ATI DPP")

desc 4 1 if conditional output is written by program; otherwise 0.

Field Size in Bytes Value

namesz 4 8

descsz 4 4 * nfloat32consts

type 4 ELF_NOTE_ATI_FLOAT32CONSTS (current value is 5)

name 8 ELF_NOTE_ATI (current value is "ATI DPP")

desc 4 * nfloat32consts List of the float32 constant indices used in the program.

Field Size in Bytes Value

namesz 4 8

descsz 4 4 * nint32consts
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Program Loading 49
Early Program Exit Note
The Early Exit Note is summarized in the following table. If an object file does not contain an early program exit
note, then the program loader acts as if the program has no early program exit command:

type 4 ELF_NOTE_ATI_INT32CONSTS (current value is 6)

name 8 ELF_NOTE_ATI (current value is "ATI DPP")

desc 4 * nint32consts List of the int32 constant indices used in the program.

Field Size in Bytes Value

namesz 4 8

descsz 4 4

type 4 ELF_NOTE_ATI_EARLYEXIT (current value is 7)

name 8 ELF_NOTE_ATI (current value is "ATI DPP")

desc 4 1 if the program includes an early exit; otherwise 0.

Field Size in Bytes Value
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

50 Executable Files
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

Chapter 5
Device Interface

This chapter describes the interfaces exported by the ATI CTM Library, as detailed in the amDeviceManaged.h file.
For more information, refer to the CTM Device Interface HTML files.

5.1 Functions

5.1.1 amCloseManagedConnection
amCloseManagedConnection (AMmanagedDevice dev)

Close a managed device.

This function shuts down an instantiation of a managed device. The handle is undefined after the function call.

Parameters
dev: (in) Handle to the managed device.

Returns
No return value.

5.1.2 amCommandBufferConsumed
amCommandBufferConsumed (AMmanagedDevice dev,

AMuint32 buf

)

Submit a command buffer to a managed device.

This function submits a command buffer to a managed device. The command buffer location (as a GPU address) and
size are passed in. It returns a unique 32-bit unsigned integer identifying this command buffer submission request.
This return value can be used to query whether the command buffer has been consumed.

Parameters
dev: (in) Handle to the managed device.

buf: (in) Command buffer identifier that was returned by amSubmitCommandBuffer.

Returns
Returns 1 if command buffer has been consumed; otherwise returns 0.

5.1.3 amOpenManagedConnection
amOpenManagedConnection (const AMchar8 * dev,

AMmanagedDeviceInfo * info

)

Instantiate a managed device.
© 2006 Advanced Micro Devices, Inc. ATI CTM Guide v. 1.01

52 Functions
This function must be used to create a managed device instantiation. All CTM functions take a handle to a managed
device created here.

Parameters
dev: (in) Name of device to open a connection to.

info: (out) Information structure populated by this function.

Returns
Returns an opaque managed device handle, or NULL upon failure.

5.1.4 amSubmitCommandBuffer
amSubmitCommandBuffer (AMmanagedDevice dev,

 AMuint32 addr,

 AMuint32 size

)

Submit a command buffer to a managed device.

This function submits a command buffer to a managed device. The command buffer location (as a GPU address) and
size are passed in. It returns a unique 32-bit unsigned integer identifying this command buffer submission request.
This return value can be used to query whether the command buffer has been consumed.

Parameters
dev: (in) Handle to the managed device.

addr: (in) 32-bit unsigned integer specifying GPU address of command buffer.

size: (in) size of the command buffer in units of 32-bit unsigned integers.

Returns
Returns a unique 32-bit unsigned integer identifying this command buffer submission request, or zero if the
submission has failed.
 ATI CTM Guide v. 1.01 © 2006 Advanced Micro Devices, Inc.

	ATI CTM Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 About this Document
	1.2 Audience
	1.3 Related Documents
	Chapter 2 Specifications
	2.1 CTM Units
	2.1.1 The ATI Data Parallel Processor Array
	2.1.2 Processor Execution Unit
	2.1.3 Conditional Operation Unit
	2.1.4 Memory Controller Unit

	2.2 CTM Commands
	2.2.1 Processor Execution Unit Commands
	2.2.2 Memory Controller Unit Commands
	2.2.3 Conditional Output Unit Commands

	Chapter 3 DPP Array Instruction Set Architecture
	3.1 Instructions
	3.2 Instruction Words
	3.2.1 Synchronization of instruction streams

	3.3 ALU Instructions
	3.3.1 Sources
	3.3.2 Presubtract
	3.3.3 Inputs
	3.3.4 The Operation
	3.3.5 Instruction Modifiers
	3.3.6 Writemasks
	3.3.7 Destination
	3.3.8 Output
	3.3.9 Setting Predicate Bits
	3.3.10 ALU Result

	3.4 Texture Instructions
	3.4.1 Operations
	3.4.2 Semaphore

	3.5 Flow Control
	3.5.1 Dynamic Flow Control
	3.5.2 Stacks and Branch Counters
	3.5.3 Fields
	3.5.4 Common Flow Control Statements
	3.5.5 Optimizations

	3.6 Note on Floating Point
	3.6.1 Pervasive Deviations from IEEE
	3.6.2 ALU Non-Transcendental Floating Point
	3.6.3 ALU Transcendental Floating Point
	3.6.4 Texture Floating Point

	3.7 Errata
	Chapter 4 DPP Application Binary Interface
	4.1 Executable Files
	4.1.1 File Format
	4.1.2 ELF Header
	4.1.3 Program Code Sections
	4.1.4 Program Loading

	Chapter 5 Device Interface
	5.1 Functions
	5.1.1 amCloseManagedConnection
	5.1.2 amCommandBufferConsumed
	5.1.3 amOpenManagedConnection
	5.1.4 amSubmitCommandBuffer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /LuxiSerif
 /LuxiSerif-Bold
 /LuxiSerif-BoldOblique
 /LuxiSerif-Oblique
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

