
GPGPU Lessons Learned
Mark Harris

General-Purpose Computation on GPUs

Highly parallel applications
Physically-based simulation
image processing
scientific computing
computer vision
computational finance
medical imaging
bioinformatics

www.gpgpu.org

NVIDIA GPU Pixel Shader GFLOPS

• GPU Observed GFLOPS
• CPU Theoretical peak GFLOPS

2005 2006

Physics on GPUs

GPU: very high data parallelism
G70 24 pixel pipelines, 48 shading processors
1000s of simultaneous threads
Very high memory bandwidth
SLI enables 1-4 GPUs per system

Physics: very high data parallelism
1000s of colliding objects
1000s of collisions to resolve every frame

Physics is an ideal match for GPUs

Physically-based Simulation on GPUs

Jens Krüger, TU-Munich

Doug L. James, CMU

Particle Systems

Fluid Simulation

Cloth Simulation

Soft-body Simulation

What about Game Physics?

Fluids, particles, cloth map naturally to GPUs
Highly parallel, independent data

Game Physics = rigid body physics
Collision detection and response
Solving constraints

Rigid body physics is more complicated
Arbitrary shapes
Arbitrary interactions and dependencies
Parallelism is harder to extract

Havok FX

A framework for Game Physics on the GPU
Joint NVIDIA / Havok R&D project launched in 2005

For details, come to the talks:

Havok FX™: GPU-accelerated Physics for PC Games
4:00-5:00PM Thursday

[Need location]

Physics Simulation on NVIDIA GPUs
5:30-6:30PM Thursday

[Need Location]

Havok FX Demo

NVIDIA DinoBones demo

Lessons learned from Havok FX

Arithmetic Intensity is Key

CPUs and GPUs can get along

Readback ain’t wrong

Vertex Scatter vs. Pixel Gather

Printf debugging for pixel shaders

Arithmetic Intensity is Key

Arithmetic Intensity = Arithmetic / Bandwidth

GPUs like it high
Very little on-chip cache
Going to mem and back costs a lot
Long programs with much more math than texture
fetch

Game physics has very high AI
> 1500 pixel shader cycles per collision
~ 100 texture fetches per collision

Havok GPU Threading Experiment

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320 331 342

ms

Number of 32 pixel rows shaded

Performance of a pixel shader

Leverage Processor Strengths

GPUs are good at data parallel computation
CPUs are good at sequential computation

Most real problems have a bit of both
Luckily most real computers have both processors!
Especially game platforms

Rigid body collision processing is a great
example

Rigid Body Dynamics Overview

3 phases to every simulation clock tick
Integrate positions and velocities
Detect collisions
Resolve collisions

Integration is embarrassingly parallel
No dependencies between objects: use the GPU

Detecting collision is basically scene traversal
CPU is good at this – use it

Resolving collisions is a tricky one
Is it parallel enough for the GPU?

Is physics a data parallel task?

Solve Collisions

New
Velocities

Contacts
&

Velocities

Body 1

Body 2

Body 5

Body 7

Body 6

Body 3 Body 8

Body 4

1

2
3

4

5

6

7

8 9
10

11

12

Is physics a data parallel task?

Solve Collisions

New
Velocities

Contacts
&

Velocities

Body

Body

Body

Body

Body

Body Body

Body

Is physics a data parallel task?

Solve Collisions

New
Velocities

Contacts

Solve
link 1

Solve
link 2

Solve
link N

Batch 1 Batch 2 Batch 3

Solve
link 1

Solve
link 2

Solve
link N

Solve
link 1

Solve
link 2

Solve
link N

Readback is Not Evil

Hybrid CPU-GPU solution implies
communication

Readback and download across PCI-e bus

It’s not that bad if you use it wisely
Minimize transfer size and frequency
Use PBO to optimize transfers

Physics data << computation
Read back and download a few bytes per obj each
frame
At most a few MB per frame < 200 MB/sec
PCI-e = 4 GB / sec

Vertex Scatter vs. Pixel Gather

Problem: sparse array update
Computed a set of addresses that need to be updated
Compute updates for only those addresses in an
array

Method 1: Pixel Gather

(Pre)compute an array of compute flags
Process all pixels in the destination array
Branch out of computation where flag is zero

0 0 0 0 0

0 0 0 0 0

0 0 00 0

0 0 0 0

0 0 0 0 0

0

0 0 0 00

1

1

1

1

1

1

0,4

2,3

4,5

0,1

0,2

4,2

Method 2: Vertex Scatter

(Pre)compute addresses of elements to update
Draw 1-pixel points at those addresses

Run update shader on points

Vertex Scatter vs. Pixel Gather

Not obvious that Vertex Scatter can be a win
Drawing single-pixel points is inefficient
Because shader pipes process 2x2 “quads” of pixels

But you can use a simple heuristic
Use Vertex Scatter if # of updates is significantly
smaller than array size
Otherwise use pixel gather

But always experiment in your own application!

Printf for Pixels

Debugging pixel shaders is hard
Especially GPGPU shaders – output not an image

Even harder if you’ve used all of your outputs
Havok FX easily uses up 4 float4 MRT outputs

A simple hack to dump data from your shaders
A macro to dump arbitrary shader variables
A wrapper function to run the program once for all
“printfs”

And run it once more with correct outputs

Printf for Pixels

First, define a handy macro to put in your
shaders

#ifdef DEBUG_SHADER
#define CG_PRINTF(index, variable) \

if (debugSelector == index) \
DEBUG_OUT = variable;

#else
#define CG_PRINTF(index, variable)

#endif

Printf for Pixels
float4 foo(float2 coords, // other params
#ifdef DEBUG_SHADER

uniform float debugSelector
#endif

) : COLOR0 {
#ifdef DEBUG_SHADER

float4 DEBUG_OUT;
#endif

float4 temp1 = complexCalc1();
float4 temp2 = complexCalc1(temp1);
float4 ret = complexCalc3(temp2);

CG_PRINTF(1, temp1);
CG_PRINTF(2, temp2);

#ifdef DEBUG_SHADER
CG_PRINTF(0, ret);
return DEBUG_OUT;

#else
return ret;

#endif
}

Use the macro to instrument your shader

Printf for Pixels: C++ code

debugProgram(CGProgram prog, x, y, w, h, float** debugData)
{
CGParam psel = cgGetNamedParameter(prog, “debugSelector”);
for (int selector = 1; selector < 100; ++selector) {
if (debugData[selector] == 0) break;

// run program with debug selector
cgGLBindFloat1f(psel, selector);
runProgram(prog, x, y, w, h);

// read back results
glReadPixels(x, y, w, h, GL_RGBA, GL_FLOAT,

debugData[selector]);
}

cgGLBindFloat1f(psel, 0);
runProgram(prog, x, y, w, h); // run program as normal

}

Questions?

mharris@nvidia.com

Havok FX presentations at GDC 2006:

Havok FX™: GPU-accelerated Physics for PC
Games

4:00-5:00PM Thursday
[Need location]

Physics Simulation on NVIDIA GPUs
5:30-6:30PM Thursday

[Need Location]

	GPGPU Lessons Learned
	General-Purpose Computation on GPUs�
	NVIDIA GPU Pixel Shader GFLOPS
	Physics on GPUs
	Physically-based Simulation on GPUs
	What about Game Physics?	
	Havok FX
	Havok FX Demo
	Lessons learned from Havok FX
	Arithmetic Intensity is Key
	Havok GPU Threading Experiment
	Leverage Processor Strengths
	Rigid Body Dynamics Overview
	Is physics a data parallel task?
	Is physics a data parallel task?
	Is physics a data parallel task?
	Readback is Not Evil	
	Vertex Scatter vs. Pixel Gather
	Method 1: Pixel Gather
	Method 2: Vertex Scatter
	Vertex Scatter vs. Pixel Gather
	Printf for Pixels
	Printf for Pixels
	Printf for Pixels
	Printf for Pixels: C++ code
	Questions?

