COMPLETE PROOFS OF GODEL’S INCOMPLETENESS
THEOREMS

LECTURES BY B. KIM

Step 0: Preliminary Remarks

We define recursive and recursively enumerable functions and relations, enumer-
ate several of their properties, prove Godel’s f-Function Lemma, and demonstrate
its first applications to coding techniques.

Definition. For R C w" a relation, xg : w" — w, the characteristic function on

R, is given by
. [1 if~R@),
a) =
Xr(@) {0 it R(a).
Definition. A function from w™ to w (m > 0) is called recursive (or com-
putable) if it is obtained by finitely many applications of the following rules:

RI. e I'":w" — w,1<i<n,defined by (x1,...,2,) — x; is recursive;
e +:wxXw—wand-:wXw— w are recursive;
® Y. :Iw X w — w is recursive.

R2. (Composition) For recursive functions G, Hy, . .., H such that H; : w™ — w
and G : w* — w, F:w" — w, defined by

F@) = G(H\(@), ..., Hy(@)).

is recursive.
R3. (Minimization) For G : w™*! — w recursive, such that for all @ € w" there
exists some x € w such that G(a,z) =0, F : w"™ — w, defined by

F(@) = px(G(a,z) = 0)

is recursive. (Recall that pazP(x) for a relation P is the minimal z € w such
that = € P obtains.)

Definition. R(C wF) is called recursive, or computable (R is a recursive rela-
tion) if y g is a recursive function.

Proofs in this note are adaptation of those in [Sh] into the deduction system described in [E].
Many thanks to Peter Ahumada and Michael Brewer who wrote up this note.



2 LECTURES BY B. KIM

Properties of Recursive Functions and Relations:
P1. For Q C w* a recursive relation, and Hi, ..., H} : w® — w recursive func-
tions,
P={acw"|QH(a),...,Hy(a))}
is a recursive relation.

Proof. xp(a) = xo(H1(@),...,Hk(a)) is a recursive function by R2.

P2. For P C w"t!, a recursive relation such that for all @ € w” there exists
some = € w such that P(a,z), then F': w™ — w, defined by

F(a) = pxP(a,x)

is recursive.

Proof. F(a) = px(xp(@,xz) =0), so we may apply R3.
P3. Constant functions, Cy, ; : w™ — w such that C,, (@) = k, are recursive.

Proof. By induction:

Cn0(@) = pa (1317 (@,z) = 0)
Crs1 (@) = p(Co (@) < 2)

are recursive by R3 and P2, respectively.
P4. For @, P C w", recursive relations, =P, P V @, and P A @ are recursive.

Proof. We have that

X-p(@) = x<(0,xp(@))

xpv (@) = xp(@) - xq(@),
PAQ=-(-PV -Q).

P5. The predicates =, <, >, and > are recursive.

Proof. For a,b € w,
a="biff =(a <b) A =(b < a),
a>biff =(a <b),
a>biff (a>0b) A =(a=0), and
a < biff =(a >b),

hence these are recursive by P4.

Notation. We write, for @ € w", f : W™ — w a function and P C w™!

pa < (@) P(a,5) = pe(P(a,b) V © = f(a).

In particular, pz < f(@) P(x,b) is the smallest integer less than f(@) which satisfies
P, if such exists, or f(a), otherwise.
We also write

a relation,

Jr< f(a) P(x)
Vo< f(a) P(x)

(nx < f(@) P(x)) < f(a), and
—(Fz < f(@) (-P(x)))-
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The first is clearly satisfied if some x < f(@) satisfies P(x), while the second is
satisifed if all z < f(@) satisfy P(z).

P6.

P7.

Ps.

P9.

For P C w™t! a recursive relation, F : w™t! — w, defined by
F(a,b) = pr<a P(x,b),

is recursive.

Proof. F(a,b) = px(P(x

g i5) V x = a), and thus F' is recursive by P2, since
for all b, a satisfies P(z,b)

a
VT =a.
For R C w™*! a recursive relation, P,Q C w™*! such that
P(a,b) =3z <a R(x,b)
Q(a,b) =Vz<a R(x,b)
are recursive.

Proof. Note that P is defined by composition of recursive functions and
predicates, hence recursive by P1, and @ is defined by composition of re-
cursive functions, recursive predicates, and negation, hence recursive by P1
and P4.

< :w X w — w, defined by

. a—b ifa>b,
a—b=
0 otherwise,

is recursive.

Proof. Note that

a—b=pz(b+x=aVa<b).

If Gq,...,GE : W™ — w are recursive functions, and Ry,..., Ry C w™ are
recursive relations partitioning w™ (i.e., for each @ € w", there exists a
unique ¢ such that R;(@)), then F': w™ — w, defined by

Gi(a) if Ryi(a),
Gao(a) if Ry(a),
) — | 0 RO
Gi(a) if Gi(a),

Proof. Note that

F=Gix-r, + + GrX-R,,-
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P10. If @Q4,...,Qr C w™ are recursive relations, and Ry,..., Ry C w™ are recur-
sive relations partitioning w™, then P C w™, defined by

Q1(a) if Ryi(a),
P(a) iff 4 :
Qr(a) if Ri(a),
is recursive.
Proof. Note that
Yo (@ it Bi(a),
xp(@) =4 :
Xq.(a) if Ri(a@),
is recursive by P9.

Definition. A relation P C w" is recursively enumerable (r.e.) if there exists
some recursive relation Q C w™*! such that

P(a) iff 32Q(@, ).

Remark If a relation R C w" is recursive, then it is recursively enumerable, since
R(a) iff 3x(R(@) Az = z).

Negation Theorem. A relation R C w™ is recursive if and only if R and —~R are
recursively enumerable.

Proof. If R is recursive, then =R is recursive. Hence by above remark, both are r.e.

Now, let P and @ be recursive relations such that for @ € w™, R(a) iff JzQ(a, x)
and —R(a) iff IxP(a, x).

Define F' : w™ — w by

F(@) = p(Q(@,z) v P(a, ),

recursive by P2, since either R(@) or =R(@) must hold.

We show that

R(@) iff Q(a, F(a)).

In particular, Q(@, F'(a)) implies there exists = (namely, F'(@)) such that Q(a,z),
thus R(a@) holds. Further, if =Q(a, F'(a)), then P(a, F(a)), since F(a) satisfies
Q(a,z) V P(a,z). Thus ~R(a) holds.

The (-Function Lemma.

B-Function Lemma (Godel). There is a recursive function (3 : w?* — w such that
B(a,i) < a—1 for all a,i € w, and for any ag,ay,...,a,_1 € w, there is an a € w
such that B(a,i) = a; for alli < n.

Remark 1. Let A = {ay,...an} C w~{0,1} (n > 2) be a set such that any two
distinct elements of A are realtively prime. Then given non-empty subset B of A,

there is y € w such that for any a € A, aly iff a € B. (y is a product of elements in
B.)

Lemma 2. If k|z for z # 0, then (14 (j + k)z,1+ jz) are relatively prime for any
j Ew.
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Proof. Note that for p prime, p|z implies that p/1 + jz. But if p|1 + (j + k)z and
p|1 + jz, then p|kz, implying p|k|z or p|z, and thus p|z, a contradiction.

Lemma 3. J : w? — w, defined by J(a,b) = (a + b)? + (a + 1), is one-to-one.
Proof. If a+b < a’ + ¥, then
J(a,b) = (a+b)2+a+1 < (a+b)*+2(a+b)+1 = (a+b+1)* < (d/+b)? < J(d, V).
Thus if J(a,b) = J(a',V'), then a +b=a’ + V', and
0=J(a,V)— J(a,b) =d —a,

implying that a = a’ and b =¥/, as desired.
Proof of B-Function Lemma. Define

B(a,i) = pr<a—13By<a(Fz<a(a= J(y,z) ADiv(l + (J(z,i) + 1) - 2,¥)))),

where Div(z,y) = dz2<y+ 1(y = 2z - x) (satisfied iff z|y) is recursive. It is clear
that (3 is recursive, and that 3(a,i) < a—1.

Given ay,...,anp—1 € w, we want to find a € w such that 8(a,?7) = a; for all
i < n. Let

¢ =max{J(a;,1) + 1},
<n

and choose z € w, nonzero, such that for all j < ¢ nonzero, j|z.

By Lemma 2, for all j,I such that 1 < j <1 < ¢, (14 jz,1+ 12) are relatively
prime, since 0 < I — j < ¢ implies that (I — j)|z. By Remark 1, there exists y € w
such that for all j < ¢,

1+ (+1)z|yiff j = J(ai,i) for some i < n. (%)

Let a = J(y, 2).
We note the following, for each a;:
(i) a; <y<aand z <gq;
In particular, y, z < a by the definition of J, and that a; < y by (x).
(i) Div(l+ (J(ai, i) +1) - z,y);
From ().
(ii) For all x < a;, 1+ (J(z,%) + 1)z fy;
Since J is one-to-one, x < a; implies J(z,7) # J(a;,1), and for j # i,
J(z,4) # J(aj,j). Thus, by (*), « does not satisfy the required predicate
for y and z as chosen above.
Since for any other y' and 2/, a = J(y,2) # J(y',2’), we have that a; is in fact
the minimal integer satisfying the predicate defining 8, and thus §(a,i) = a;, as
desired.

The S-function will be the basis for various systems of coding. Our first use will
be in encoding sequences of numbers:

Definition. The sequence number of a sequence of natural numbers a1, ..., a,,
is given by

<ayy...ap>= pr(B(z,0) =nA Bz, 1) =ar A--- AB(z,n) = ay).
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Note that the map <> is defined on all sequences due to the properties of 3
proved above. Further, since 3 is recursive, <> is recursive, and <> is one-to-one,
since

ALy eee s Oy >=<byp,..., 0>
implies that n = m and a; = b; for each i. Note, too, that the sequence number of
the empty sequence is
<>= pz(f(z,0) =0) = 0.

An important feature of our coding is that we can recover a given sequence from

its sequence number:

Definition. For each i € w, we have a function (); : w — w, given by
(a); = Bla,i).

Clearly (); is recursive for each i. ()o will be called the length and denoted [h.

As intended, it follows from these definitions that ( < ay...a, >); = a; and
I(<ai...an>)=n.

Note also that whenever a > 0, we have h(a) < a and (a); < a.
Definition. The relation Seq C w is given by

Seq(a) iff Vo < a(lh(z) # h(a) V Fi < Ih(a)((2)it1 # (a)it1)-
That Seq is recursive is evident from properties enumerated above. From our

definition, it is clear that Seg(a) if and only if a is the sequence number for some
sequence (in particular, a = <(a)1, ..., (a)m)>). Note that

—Seq(a) iff 3z < a(lh(z) = lh(a) A Vi < h(a)((z)ix1 = (a)it1)-
Definition. The initial sequence function Init: w? — w is given by
Init(a,i) = pe(lh(z) =1 A Vj <i((2)j+1 = (a)j41)-
Again, Init is evidently recursive. Note that for 1 <i <mn,
Init( <ay,...,ap>,1) =<ai,...,a;>,
as intended.

2

Definition. The concatenation function * : w® — w is given by

ax*xb= px(lh(x) = lh(a) + (D)
A Vi < (@) (@)1 = (@)is1) A V) < BB (@) niay 01 = B)j41):
Note that * is recursive, and that
<A1 Q> k% <bp... by >=<ay...an,by... by >,
as desired.

k k

Definition. For F : w x w* — w, we define F : w x w* — w by

F(a,b) =<F(0,b),...,F(a—1,b)>,
or, equivalently, B
px(lh(x) =a AVi < a((z)it1 = F(i,0))).

Note that F(a,b) = (F(a + 1,b))ay1, thus we have that F is recursive if and
only if F is recursive. Because F(a,3) is defined in terms of values F(x,3), for =
strictly smaller than a, this construction will enable us to define F' inductively.
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Properties of Recursive Functions and Relations (continued):

P11. For G : w X w x w™ — w a recursive function, the function F': w X w™ — w,
given by

F(a,b) = G(F(a,b),a,b),

is recursive.

Proof. Note that

where

H(a,b) = px(Seq(z) A lh(z) = a AVi < a((2)iy1 = G(Init(z,1),4,b)).

According to this definition, F(0,b) = G( <>,0,b) = G(0,0,b),
F(1,b) = G( <G(0,0,b)>,1,b),
and
F(2,b) = G( <G(0,0,b), G( <G(0,0,b)>,1,b) >,2,b),

showing that computation is cumbersome, but possible, for any particular value a.

P12. For G:w xw"” wwand H : w X w" - w, F:w X w" — w, defined by
- F(G(a,b),b) if G(a,b) < a, and
H(a,b) otherwise,

is recursive.
Proof. Note that when G(a,b) < a, we have

F(G(a76)7g) = (F(G,, B»G(a,g)-&-l’

which is recursive by P11.

For most purposes, when we define a function F' inductively by cases, we must
satisfy two requirements to guarantee that our function is well-defined. First, if
F (a?,B) appears in a defining case involving a, we must show that x < a whenever
this case is true. Second, we must show that our base case is not defined in terms
of F. In particular, this means that we cannot use F' in a defining case which is
used to compute F'(0, ).

P13. Given recursive G : w" — wand H : w? x w" = w, F: w X w" — w, given
by

- H(F(a—1,b),a—1,b) ifa >0, and
G(b) otherwise,

is recursive.

Proof. Note that F' has the form of P12.
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P14. Given recursive relations () C w'tl and R C w”tl and recursive H :
w X w" — w such that H(a,b) < a whenever Q(a,b) holds, the relation
P C w™t!, given by

P(a,b) iff {P(H(a’b)’b) if Q(a, ),
’ R

(a,b) otherwise,
is recursive.
Proof. Define H' : w X w™ — w by
H'(a,5) = H(a,b) if Q(a,.g), and
a otherwise.
H' is clearly recursive. Note
- H'(a,b),b) if H'(a,b) < a, and
xp(a.5) = { XU (@0LD) T D)
xr(a,b) otherwise.
The following example will prove useful:
Definition. Let A C w? be given by
A(a,c) iff Seq(c) Nlh(c) =aAVi<a((c)it1 =0V (¢)it1 = 1),
and let F : w? — w be given by

ux(A(a, x)) ifi =0,
F(a,i) = pz(F(a,i—1) <z A A(a,z) if0<i<2% and
0 otherwise.

Then the function bd : w — w is given by
bd(n) = F(n,2" —1).
Evidently, A, F', and bd are all recursive. In fact,
bd(n) = mazx{< cica...cn, > | ¢; =0 or 1}.

Step 1: Representability of Recursive Functions in Q

We define @, a subtheory of the natural numbers, and prove the Representability
Theorem, stating that all recursive functions are representable in this subtheory.

Consider the language of natural numbers L = {+,-, 5, <,0}. We specify the
theory @ with the following axioms.

Ql. Vz Sz #0.

Q2. VavVy Sz =Sy -z =1y.

Q3. Vz 240 ==x.

Q4. VaVy z+ Sy = S(z +y).

Q5. Vx z-0=0.

Q6. VavVy - Sy=z-y+ .

Q7. Vz —(z <0).

Q8. VaVy z < Sy+—z<yV z=uy.
Q9. VaVy e <y Vax=y Vy<azx.
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Note that the natural numbers, N, are a model of the theory Q. If we add to
this theory the set of all generalizations of formulas of the form

(b5 A Va(p = ¥5,)) = ¢,
providing the capability for induction, we call this theory Peano Arithmetic, or PA.
Thus Q C PA, and PAF Q.

Notation. We define, for a natural number n,
n=.55...50.
~—

Definition. A function f : w™ — w is representable in @ if there exists an
Ln-formula ¢(x1,...,2,,y) such that

QFVy(p(ks, - ko, y) ==y = flk1, .-, kn))

for all k1,...,k, € w. We say ¢ represents f in Q.

Definition. A relation P C w™ is representable in () if there exists an Ly-formula
o(z1,...,2y) such that for all ky,... k, € w,

P(ki,....kn) = QF ki, ... kn)

and
—P(k1,... kn) = QF —p(ke, ... k).
Again, we say that ¢ represents P in Q.

To prove the Representability Theorem, we will require the following:
Lemma 1. If m = n, then Q F m = n, and if m # n, then Q F —~(m = n).

Proof. Tt is enough to demonstrate this for m > n. For n = 0, our result follows
from axiom Q1. Assume, then, that the result holds for ¥k = n and all [ > k. Then
we have that, for a given m > n+1, Q F m—1 # n. By axiom Q2 we have,
QFm—1%#mn—m#n+1. Hence we conclude that @ - m # n+ 1, and the
result holds for £ = n + 1, as required.

Lemma 2. QFm+n=m+n.

Proof. For n = 0, our result follows from axiom Q3. Assume, then, that the result
holds for k = n. We must show it holds for kK =n+ 1 as well. But QFm +n =
m +n, and we obtain Q-m+n+1=m+n+1 by Q4.

Lemma 3. QFm-n=m-n

Proof. For n = 0, our result follows from axiom Q5. Assume, then, that the
result holds for K = n. Then Q@ - m -n = mn. Applying Q6, we have that
QFm-n+1=mn+ m, and applying the previous lemma, we have the result for
k =n+ 1, as required.

Lemma 4. If m < n, then Q - m < n. Further, if m > n, we have Q F —(m < n).

Proof. For n = 0, the result follows from Q7. Assume, then, that the results hold
for k = n. We show both claims hold for £ =n + 1 as well.

First, suppose m < n + 1. Either m < n, and @ - m < n by the induction
hypothesis, or m = n, and @ - m = n by Lemma 1. In either case, by Q8, we have
that QFm <n+1.
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Second, suppose m > n + 1. Then m > n and by the induction hypothesis,
QF —(m < n). By Lemma 1, we also have @ F =(m = n). Applying Q8 and Rule
T, we have Q F m > n. Again applying Rule T, we have that Q - ~(m < n 4 1),
as desired.

Lemma 5. For any relation P C w"”, P is representable in Q if and only if xp is
representable.

Proof. Assume P is representable and that ¢(x; ...x,) represents P. Let
P(E,y) = (p(T) Ay =0) V (=) Ay=1).

We claim (T, y) represents x p:
Suppose P(ky,...,ky) holds. Then Q F ¢(k1,...,kn). Now since

k1, kn) = (Y =0 = ¥(ks,. .. Fn,y))

is a tautology, we have Q -y = 0 «— 9 (ki,...,kn,y), as required. Similarly, if
—P(ky,...,ky) holds, then Q F —p(ky, ..., ky), and since

Fﬁ@(ﬁ,,&)ﬂ(y:l‘—’w(ﬁ,7k7n,y)7

we obtain that Q Fy =1 «— ¢(k1,...,kn,y), as required. Thus, ¥(T,y) repre-
sents xp.

Assume now that (T, y) represents xp. Then ¥(Z,0) represents P.

In particular, when P(kq,...,k;,) holds, we have

QFY(ky,... kn,y) —y=0.

Substitution of y by 0 yields @ F v¥(ki,...,ks,0), as desired. Similarly, when
=P(ki,...,ky) holds, we have

QFYki.. kny) —y=1,

and because @ - —(0 = 1) we may conclude @ F —¢(k; ... k,,0), as needed. Thus
is P representable.

Lemma 6. For a formula ¢ in Ly,

QE¢i— = (pho1 — (2 <k— )
Proof. The proof is by induction on k. When £ is 0, we have

QF (x<0— ).

This is (vacuously) true by axiom Q7. Now, assume that

QE¢s — ... = (pho1 — (2 <k —¢)).
We must show that

QFwg— - = (pf = (x<kt1l—0)).

Equivalently, we want to show that I' F ¢ where I' = Q U {¢§, ..., o}, 2 < k+1}.
By Q8,TF2 <k V x = k. In the first case, the inductive hypothesis implies that
I' F ¢, while in the latter case, =z = k — (¢f < ¢), and hence I" - . By either
route, I' proves . a

Lemma 7. If (a) Q - —¢j, for k < n, and (b) Q I ¢, then for 2 # z not appearing
in ¢, -
QF(p AVz(z<x— ) — z=n.
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We define
Y= (p A V2(z <z — 7).

Now, we obtain

):x:ﬁ—>(¢<—>(goz/\vz(2<ﬂ—>_'§0§)))o (*)

By (a) and Lemma 6, we get

QFz<n— -y, ()

and, applying substitution and generalization, we obtain

QFVz(z <n— —pl).

Combining this with (b) and (x), we conclude

QFz=n—1.

For the reverse implication, we note that

FVz(z <z — —p]) — (n <z — =2¢pp),

and thus (b) implies @ F ¢ — —(n < z). Now QU{¢,z < n} F ¢ A = by (**) and
the definition of ¢. Therefore @ F ¥ — —(z < n) and by Axiom Q9 we conclude
QFY—z=n

Representability Theorem. Fvery recursive function or relation is representable

mn Q.
Proof.

It suffices to prove representability of functions having the forms enumerated

in the definition of recursiveness:

R1.

R2.

Iin7 +7 ) and X<-

The latter three are representable by Lemmas 2, 3, and 4. In particular,
for +, say, we have that p(z1,z2,y) = y = 21 + x2 represents + in @, since
for any m,n € w,

QtF p(m,n,y) < y =m+n, and hence

QFVYy(p(m,n,y) —— y=m+n),
as required. - and x< are similar (with y < making additional use of Lemma
5).

I is representable by ¢(z1,...,Zn,y) = x; = y. In particular, for any

ki,... kn € w, I?(k1,...,k,) = ki, and hence
Qb k... kny) ——y=ki——y=1"(k,... . kn),

by our choice of ¢. Generalization completes the result.
F(a) = G(Hy(a),..., Hg(a)), where G and each of the H; are representable.

Assume that G is represented in @ by ¢ and the H; are represented in
Q@ by 1, respectively. We show that F' is represented by
Oé(f, y) = 321, ey Zk(wl(fa Zl) JAREERIVA wk(f7 Zk) A QD(ZL e 7Zk7y))'
In other word we want to show, for any ag,...,a, € w,

QFalay,... an,y) «— y=GHi(a),..., Hi(@)) (t)

where @ = (ay...a,).
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Now, for I' = Q U {a(as, ..., an,y)}, since the 1; represent H,, we have

that T F 3z1,...,21(21 = Hi(@) A -+ A 2 = He(@) A @21, .., 21, 9)).
Hence we have

T ’: E'Zl,~~»,Zk(SD(Hl(a)»'"aHk(a)vy))’

and since the z; do not appear,

I'E o(H1(@),. .., Hy(a),y).

Since ¢ represents G, we have

I'Ey=GH(@), ..., (@),

as required.
On the other hand, for ¥ = Q U {y = G(Hy(a), ..., H(a))},

Y+ o(Hi(@), ..., Hy(@),y)
YE3z,.,26(z0 = Hi(@) A -z = Hi(@) A (2155 2k, Y))

SE 3z, z(01(@, 2) A (@, z) A (210,28, Y))
Ykalal,...,an,Y)

Thus (t) is established.
F(a) = px(G(a,x) = 0), where G is representable in @ and for all @ there
exists = such that G(@,x) = 0, is representable in Q.

Assume G is represented in @ by o(z1,...,2Z,,2,y). Let

(@1, T, ) =08 A Vz(z <2 — —pf7).
Let F'(a) =b and k; = G(a, 1) for i € w. Then
QF¢lar,. - an,i,y) — y = ki,
thus
QF ¢lar;. s an,4,0) «— 0= ki,
. Hence now if j < b, so that k; # 0, then
QF ~p(ay,. .., an, ,0).
On the other hand, k, = 0, so
QF w(a,. -, an,b,0).
Hence, by Lemma 7,
QF (@ =z, y)f A Vz(z <z — =@ 2,y)p0) «— @ =b,

and thus,
QFY(az)—— xz=0b.

By generalization, we have that v represents F' in @, as desired.
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Step 2: Axiomatizable Complete Theories are Decidable

We begin by showing that we may encode terms and formulas of a reasonable
language in such a way that important classes of formulas, e.g., the logical axioms,
are mapped to recursive subsets of the natural numbers. We use this to derive the
main result.

Definition. Let £ be a countable language with subsets €, &, and P of constant,
function, and predicate symbols, respectively (=€ P). Let V be a set of variables
for L. L is called reasonable if the following two functions exist:
e h:LU{~, —,V}UV — w injective such that V = h(V), € = h(C), F = h(F),
and P = h(?P) are all recursive.
e AR : w — w \ {0} recursive such that AR(h(f)) = n and AR(h(P)) =n
for m-ary function and predicate symbols f and P.

For the rest of this note, the language L is countable and reasonable.

Now we define a coding [] : {L-terms and L-formulas} — w inductively, by

e For z € VUG, [z] = <h(x)>.
e Foruy,...,u, e VUCand f € F,

[furug ... uy| = <h(f), [u1], [uz],..., [un]> .
e For L-terms ty,...,t, and P € P,
[Ptity...tn] = <h(P),[t1],..., [ta]> .
e For L-formulas ¢ and 1,

[0 = o] = <h(=), [e], [¥]>,
[—¢] = <h(=),[¥] >,
Vel = <h(¥), [],[e]> .

Note that our definition of [] is one-to-one. Given a term or formula o, we call
[c] the Gédel number of o.

We show the following predicates and functions are recursive (We follow defini-
tions for syntax in [E].):

(1) Vble={[v] |v eV} Cwand Const={[c] | c€ C} Cw.
Proof. Note

(2) Term = {[t] | t an L-term} C w.

Proof. Note
Vi < (Ih(a)1) Term((a);42) if Seq(a) A F((a)r)
Term(a) iff A AR((a)1) = Ih(a)-1,
Vble(a) vV Const(a) otherwise.

(3) AtF ={[o] | o an atomic L-formula} C w.
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Proof. Note
AtF(a) iff Seq(a) A P((a)1) A (AR((a)1) = lh(a)-1)
A Vj<(lh(a)=1) (Term((a);+2)).

(4) Form={[¢] | ¢ an L-formula} C w.

Proof. Note
Form((a)2) if a = <h(=),(a)2>,
Form(a it 4 Form(@)2) A Form((@)) if a = <h(=). (a)a. (a)s >
Vble((a)2) A Form((a)s) if a =<h(V),(a)z2, (a)s>,
AtF(a) otherwise.

(5) Sub: w3 — w, such that Sub([t], [z], [u]) = [tZ] and Sub([¢], [2], [u]) =
[@Z] for terms ¢ and w, variable x, and formula .

Proof. Define

c if Vble(a) A a =0,
<(a)1, Sub((a)z,b,¢),. .. if Ih(a) > 1 A (a); # h(Y)
ubla. b. ¢) — ) SUb((a)lh(a)7 b, C) > A SBQ(a)a
Subla, b,¢) <(a)1,(a)z, Sub((a)s,b,c)> if a = <h(V),(a)z, (a)s>,
A (CL)Q #0b
a otherwise.

Note that, if well-defined, the function has the properties desired above.

We show Sub is well-defined by induction on a: a = 0 falls into the
first or last category since Ih(0) = 0, hence Sub(0,b,c) is well-defined for
all b,c € w. If a # 0, then (a); < a for all i < Ih(a), and thus we may
assume the values Sub((a);, b, ¢) are well-defined, showing Sub(a, b, ¢) to be
well-defined in all cases.

(6) Free C w?, such that for formula ¢, term 7, and variable =, Free([¢], [2])
if and only if = occurs free in ¢, and Free([7], [2]) if and only if = occurs
inT

Proof. Define

3j < (Ih(a)—1) (Free((a)j+2,b)) if h(a) > 1 A (a)1 # h(V),
Free(a,b) iff { Free((a)s,b) A (a)2 # b if ih(a) > 1 A (a); = h(Y),
a=>b otherwise.

Free clearly has the desired property, and that it is well-defined follows by
essentially the same induction on a as above.

(7) Sent={[¢] | ¢ is an L-sentence} C w.

Proof. Note
Sent(a) iff Form(a) A Yb<a (= Vble(b) V —Free(a,b)).
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(8) Subst(a,b,c) C w? such that for a given formula ¢, variable z, and term t,
Subst([¢], [x], [t]) if and only if ¢ is substitutable for z in .

Proof. Define

Subst((a)2,b, c) if a =<h(=),(a)2>,
Subst((a)2,b,¢) N Subst((a)s,b,c) if a =<h(—),(a)s, (a)s>,
Subst(a, b, c) iff < =Free(a,b) V (—Free(c, (a)z) it a = <h(V), (a)2, (a)s>,
A Subst((a)s, b, c))
0=0 otherwise.

Note that Subst has the desired property, and is well-defined by essentially
the same induction used above.

(9) We define

—False((a)2,b) A False((a)s,b) if a =<h(—),(a)2,(a)s>

A Form((a)2) A Form((a)s),
—False((a)2,b) if a =<h(=),(a)2> A Form((a)2),
Form(a) A (b)e =0 otherwise.

False(a,b) iff

False is recursive by the same induction as applied above. We note the
significance of False presently.

To each b € w, we may associate a truth assignment v, such that for a prime
formula ¢ (atomic or of the form Vay),

0y () = Fiff (b7 = 0.

Further, for any truth assignment v : A — {T,F}, where A is a finite set of prime

formulas, there exists a b such that v = vp: we may write A = {¢1,..., 9, } such
that [p1] < [p2] < --- < [en]. For 1 < j < [¢,] define ¢; = 0 when j = [¢;]
for some i < n and v(yp;) = F, and ¢; = 1 otherwise. Then b = <eci,...,¢[4,1>

satisfies v, = v on A.
Then moreover, for any formula ¢ built up from A,

o(p) =F iff 75(p) =F iff False([p],b).
(10) Define Taut = {[o] | ois a tautology} C w.

Proof. Recall bd : w — w such that bd(a) = max{ <c1,...,¢a > | ¢ €
{0, 1}}, recursive, has been previously defined. Define

Taut(a) iff Form(a) A Yb<(bd(a) + 1) (—False(a,b)).
(11) AG2 = {[¢] | ¢ is in axiom group 2} C w.

Proof. Recall axiom group 2 contains formulas of the form Vzy — ¢, with
term t substitutable for z in . Thus

AG2(a) iff z,y, z<a (Vble(x) A Form(y) A Term(z) A Subst(y,x, 2)
A a=<h(—=), <h(¥Y),z,y>, Suby,z, z)>),
where 3z, y, 2<a P(x,y, z) abbreviates what one would expect.

(12) AG3 = {[¢] | ¢ is in axiom group 3} C w.
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Proof. Recall we take axiom group 3 to be the formulas having the following
form: Va (¢ — ¢') — (Vo — Vae)'). Thus
AG3(a) iff 3z, y, z<a (Vble(x) A Form(y) A Form(z)
A a=<h(=), <h(¥),z, <h(—=),y,z>>,
<h(—=), <h(V),z,y>, <h(V),z,z>>>)

(13) AG4 = {[¢] | ¥ is in axiom group 4} C w.

Proof. Recall axiom group 4 contains formulas of the form ¢ — Va1, where
x does not occur free in 1. Thus
AG4(a) iff Jz,y<a (Vble(x) A Form(y)
A —Free(y, @) A a = <h(—=),y, <h(Y),z,y>>)

(14) AG5 = {[¢] | ¢ is in axiom group 5} C w.

Proof. Recall axiom group 5 contains formulas of the form =z = z, for a
variable x, hence

AG5(a) iff 3z <a (Vble(x) N a = <h(=),z,z>).

(15) AG6 = {[¢] | ¢ is in axiom group 6} C w.

Proof. Recall formulas of axiom group 6 have the form z =y — (¥ — ¢’),
where v is an atomic formula and 1)’ is obtained by from v by replacing
one or more occurrences of x with y. Thus

AG6(a) iff Fx,y,b,c<a(Vble(x) A Vble(y) N AtF(b) N AtF(c)
A Th(b) = Ih(e) A Vj < Ih(b) + 1((0); = (b); V ((e); =y A (b); =)
A a=<h(—), <h(=),z,y>, <h(—),b,c>>)

(16) Gen(a,b) C w?, such that Gen([¢], [¥]) if and only if ¢ is a generalization
of Y (i.e., ¢ =V ...Vry) for some finite {z;} C V).

Proof. Note that

a = <h(¥),(a)z,(a)s> A Vble((a)2) N Gen((a)s,b) if a > b,
Gen(a,b) iff <0=0 if a =10,
0=1 if a <0.

(17) A={[o] | 0 € A} C w, where A is the set of logical axioms.
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Proof. Note that

A(a) iff Ib<a+ 1 (Form(a) A Gen(a,b)
A (Taut(b) Vv AG2(b) vV AG3(b) V AG4(b) V AG5(b) vV AG6(b)))

We have, to this point, defined three codings: <> on sequences of natural num-
bers, h on the language and logical symbols, and [] on the terms and formulas. We
presently define a fourth coding, of sequences of formulas:

7 : {sequences of L-formulas} — w,
given by
Tor, . sonll =<le1l,..., [on]>.
This map is one-to-one, as it is derived from the established (injective) codings,

and in particular, we can determine, for a given number, if it lies in the image of
[, and, if so, recover the associated sequence of formulas.

Definition. Given L, let T be a theory (a collection of sentences) in L. Define
T={lo]|oeT).

We say that T is axiomatizable if there exists a theory S, axiomatizing T (that
is, such that CnS = CnT), such that S is recursive. We say that T is decidable
if CnT is recursive.

We shall make use of the following relations:

e Dedr ={[e1,---s0nl | ¢1,--.,9n is a deduction from T} C w.
Note that

Dedy(a) iff Seg(a) A Ih(a) #0
AV < (@) (A(@)342) VT((@)341) V3, E <G+ (@ker =<h(—), (@s1, (@)s11>))

e Prfy Cw?, given by Prfp(a,b) iff Dedr(b) A a = (b))
o Pfr C w, given by Pfp(a) iff Sent(a) A 3xPrfr(a,x).
Note that we may read Prfr(a,b) as “b is a proof of a from T,” and Pfr(a) as
“a is a sentence provable from T.” In particular

Pfp=CuT ={[o] | T+ o}.
We use this fact to prove the following:
Theorem. If T is axiomatizable, then Pfr = CnT is recursively enumerable.

Proof. Let S axiomatize T', where S is recursive. From the above definitions, we

see that Deds and Prfg are recursive relations, hence Pfq is an r.e. relation. But
Pfy = Pfp, since Cn S =CnT.

Theorem. IfT is axiomatizable and complete in L, then T is decidable.

Proof. By the negation theorem, it suffices to show that = Pf; is recursively enu-
merable. Note that since T is complete, for any sentence o, T ¥ ¢ if and only if
T F —o. Hence

—Pfr(a) iff =Sent(a) V ImPrip( <h(=),a>,m)
iff Im(=Sent(a) V Prip( <h(—),a>,m)).
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Thus = Pf; is recursively enumerable, and Pf; is recursive.

We can see that if we say T is axiomatizable in wider sense when S axiomatiz-
ing T is recursively enumerable, then the above two theorems still hold with this
seemingly weaker notion. In fact, two notions are equivalent, which is known as
Craig’s Theorem.

Step 3: The Incompleteness Theorems and Other Results

We return now to the language of natural numbers, L. Recall that we define,
for a natural number n,

n=55...50.

Definition. The diagonalization of an Ly formula ¢ is a new formula

d(p) = Fvo(vo = [¢] A @),

where 3 and A provide the usual abbreviations in L.

In particular, we note d(y) is satisfiable precisely when ¢ is satisfiable by some
truth assignment taking vy to the Godel number of , and Ly = d(¢) precisely
when ¢ is satisfied by every truth assignment taking vg to [¢].

Lemma. There exists a recursive function dg : w — w such that for any Ly
formula, dg([¢]) = [d(p)].

Proof. Define num : w — w by num(0) = <0> and, for n € w
num(n + 1) = <h(S), num(n) > .

In particular, note that num(n) = [n].
Define

dg(a) = <h(_')7 <h(V), PUOL <h(_‘)7
<h(=), <h(—=), <h(=), [vo],num(a) >, <h(=),a>>>>>>
Then

dg([¢]) = <h(=), <h(¥), [vo], <h(=),
<h(=), <h(=), <h(=),[vo], num([¢])>, <h(=), [p] >>>>>>,
= <h(=), <h(¥), [vo], <h(=),
<h(=), <h(=), <h(=),vol, [[¢]]>, <h(=), [p] >>>>>> .

However, writing out what formula this encodes and introducing our usual abbre-
viations, we have

dg([]) = [V (=(vo = [¢] = —¢))]

= [Fuo(vo = [¢] A ¢)]
= [d(p)],

as desired.
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Fixed Point Theorem (Godel). For any Ln-formula o(x) (i.e., either a sentence
or a formula having x as the only free variable), there is some Ly-sentence o such
that

QF o o([o]).

Proof. Since dg is recursive, it is representable in @ by Step 1, say by ¥ (z,y). Then
QFVy(¥(n,y) «— y = dg(n)).

Let 6(vo) = Jy(¢(vo,y) A ©(y)), and let n = [§(vg)]. Define
o =d(6(vo)) = Fvo(vo =n A d(vo)).
Then if we let k = dg(n) = [o], we have

o e—d(n) «— y(ny) A ey)).
But
QEY(ny) «— y=k,
and therefore

QFo«—3yly=k N p(y) < p(k) «— »([a]),

as required.

Tarski Undefinability Theorem. ThN = {[o] | N |= o} is not definable.

Proof. Suppose ThN were definable by 3(z). Then by the fixed point lemma, with
@ = —0, there exists a sentence ¢ such that

N o ~([o]).

Then N |= o implies that N = 3([o]), implying N = o, or N = =0, since Th N
is complete. On the other hand, N (£ ¢ implies N | -0, and thus that N |=
B([o]), implying N |= 0. The contradictions together imply that 5 cannot represent

ThN.

Strong Undecidability of Q. Let T be a theory in L D L. If TUQ is consistent
in L, then T is not decidable in L (CuT is not recursive).

Proof. Assume that Cn T is recursive. We first show that this implies recursiveness
of CnT U Q. Since @ is finite, it suffices to show that for any sentence 7 in the
language, CnT U {7} is recursive.

In particular, note that if « € CnT U {7}, then 7 — @ € CnT. Thus

a€CnTU{r} iff Sent(a) N <h(—),[7],a>€ CnT.

Hence CnT U {7} is recursive, as desired.

To prove the theorem, then, it suffices to show that CnT U () is not recursive. If
this were the case, then it would be representable, say by 3(z), in . By the fixed
point lemma, there exists an Ly sentence o such that

QFo— —p([c]).

IfTUQF o, then
QF B([a]),
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by the representability of Cn T U @ by ((z) in @. In particular,

QF —o,
a contradiction. On the other hand, if T'U Q ¥ o, then by representability,
Q'+ =p([a]),
and hence
QF o,

a contradiction, implying that CnT" U @ is not representable, and hence not recur-
sive.

Corollary. ThN, PA, and Q are all undecidable.
Proof. We need note only that each of these theories is consistent with Q.

Moreover, we have:

Undecidability of First Order Logic (Church). For a reasonable countable
language L D Ly, the set of all Godel numbers of valid sentences ({[o] | O F o})
is not recursive (the set of valid sentences is not decidable).

In fact, the above corollary is true for any countable L containing a k-ary pred-
icate or function symbol, k > 2, or at least two unary function symbols.

Godel-Rosser First Incompleteness Theorem. If T is a theory in a countable
reasonable L O Ly, with T U Q consistent and T axiomatizable, then T is not
complete.

Proof. By Step 2, if T is complete, then T is decidable, contradicting the strong
undecidability of Q.

Remarks. In (N, +), 0, <, and S are definable. Hence the same result follows if we
take L = {+, -} instead of our usual L. In particular, Th(N,+, ) is undecidable,
and for any 7" D Q' (where Q' is simply @ written in the language of L), we have
that T” is, if consistent, undecidable, and, if axiomatizable, incomplete.

It is important to note that for an undecidable theory T', we may have T C T”,
where T” is a decidable theory. As an example, the theory of groups is undecidable,
whereas the theory of divisible torsion-free groups is decidable.

We turn our attention now to the proof of the result used in Godel’s original
paper. In particular, Gédel worked in the model (N, +,-,0,<, F). (Note that E,
exponentiation, is definable in (N, +, -, 0, <), or, equivalently, (N, +,-)).

Let T D @ be a consistent theory in a reasonable countable language £ D Ly,
and presume that T is recursive. Then

THo=QF Pfr([o]).

In particular, T F o implies that Prfy([o],m) for some m € w. Since Prfy is

recursive, it is representable in @, hence Q F Prf,([c], m), and

Q= JxPrip([o], =),

or

QF Pir([a]).
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By the fixed point lemma, there exists a sentence « such that

T>QFa«— =Pfp([a]). (%)

If T+ «, then Q F Pfr([a]), and thus @ F —«, and hence T+ —«, a contradiction.
Thus T' ¥ «. o

On the other hand, if T is w-consistent (i.e., whenever T F Jze(z), then for
some n € w, T ¥ —p(n)), then T ¥ —«. In particular, if T+ —a, then

T+ PfT(M)a

by (). That is,
T & 3z Prfp([a], ).

However, if Prf;([a],m) for some m € w, then T F «, contradicting the consis-

tency of T. Thus we must have = Prf,([a],m) for all m € w. Since @Q represents

PTfT? o
TOQF ﬁPrfT(M, m)

for all m € w, contradicting the w-consistency of T.
Rosser generalized Godel’s proof by singling out for T' a sentence a such that
T ¥ a and T ¥ —«, without the assumption of w-consistency.

We now begin our approach to Godel’s Second Incompleteness Theorem. We fix
T, a theory in a countable reasonable language L D L.

We note the following fact from Hilbert and Bernays’ Grundlagen der Mathe-
matik, 1934.

Fact. If T is consistent, 7'+ PA, and T is recursive, then for any sentences o and
0in L,

I. TFo=QF Pfr([o])

IL. PAF (Pfr([o]) A Pfp([o — 61)) — Pfp([6])

)
L. PA‘ Pfp([o]) — Pfy (M)

Notation. We will write Congy = —Pf;([0 # 0]). Clearly Cong holds if and only
if T' is consistent.

Lemma. If TH o — 6, then PAF Pfr([o]) — Pfp([d]).

Proof. f T+ o — §, then by (I) above,
PAE Pfr([o — 6]),

and by (II),
PAF Pfp([o]) — Pfr([0]).

Godel’s Second Incompleteness Theorem. If T is consistent, T is recursive,
and T + PA, then T ¥ Cong.

Proof. By the fixed point lemma, there exists o such that
QF o —Pfp([d]). ()
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By (III), above,
PAF Pfp([a]) = Pl (TPfr([2])]) - (t)

And further, by Lemma, we have

PAF Pfr (TPA([oDT) = Ple([=0]):
Combining this result with (1), we have

PAE Pfp([o]) = Pfr([-o]).

Now note that - ¢ «— (0 — (0 # 0)). By the lemma,
PAE Pfr([o]) = Pir(Jo — (0 #0)]).

In particular,

PAE Pfr([o]) = Pfr([o]) N Pfr([o — (0 #0)]),

hence, by (II),
PA+ Pfr([a]) — Pfp([0 #0]),
- PAF Pfy([o]) — =Cony.

Thus PA+ Conp — o, by (). o
Now, suppose that 7' Cong. Then T - o, and hence by (I), T' > Q = Pfp([o]).

But again, by (f), this implies that T F —c, a contradiction, showing that T' cannot
prove its own consistency.

We remark that one may carry the proof through using only the assumption that
T is recursively enumerable.

Lob’s Theorem. Suppose T is a consistent theory in L D Loy, such that T re-
cursive, and T & PA. Then for any L-sentence o, if T & Pfp([o]) — o, then
Tkro. S

Proof. By the fixed point lemma, there exists § such that
QF 06— (Pfp([d]) — o).

Since T'+ PA D @, T proves the same result. From this we may deduce that
PAE Pir([6]) — Pfr([o]).

In particular, by our lemma, we have

PA Pir([31) — Pl ([Phr([8]) — 1)

and, combining this with (III) from above,

PAF PIe([81) = Prr (TPE()) A Plr ([PR([8]) = 1)
and thus, by (IT),

PAE Pfp([0]) — Plr([o]),

as desired.
Now assume that T+ Pfr([o]) — o. Then, by the above,

T+ Pfr([6]) — o.
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By our choice of ¢, this in turn implies that 7'+ 6. By (I), we have that @ F
PfT(M), and hence T proves the same result, implying that T F o, as desired.

Remark. Godel’s Second Incompleteness Theorem in fact follows from Lob’s The-
orem. In particular, given T as in the hypotheses of both theorems, if T+ Cony,
then

T+ Pfp([0#0]) — 0 #0.

But by Léb’s Theorem, this in turn implies that 7' F 0 # 0, showing that such a
theory, if consistent, cannot prove its own consistency.
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