
COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS
THEOREMS

LECTURES BY B. KIM

Step 0: Preliminary Remarks

We define recursive and recursively enumerable functions and relations, enumer-
ate several of their properties, prove Gödel’s β-Function Lemma, and demonstrate
its first applications to coding techniques.

Definition. For R ⊂ ωn a relation, χR : ωn → ω, the characteristic function on
R, is given by

χR(a) =

{
1 if ¬R(a),
0 if R(a).

Definition. A function from ωm to ω (m ≥ 0) is called recursive (or com-
putable) if it is obtained by finitely many applications of the following rules:

R1. • In
i : ωn → ω, 1 ≤ i ≤ n, defined by (x1, . . . , xn) 7→ xi is recursive;

• + : ω × ω → ω and · : ω × ω → ω are recursive;
• χ< : ω × ω → ω is recursive.

R2. (Composition) For recursive functions G,H1, . . . , Hk such that Hi : ωn → ω
and G : ωk → ω, F : ωn → ω, defined by

F (a) = G(H1(a), . . . ,Hk(a)).

is recursive.
R3. (Minimization) For G : ωn+1 → ω recursive, such that for all a ∈ ωn there

exists some x ∈ ω such that G(a, x) = 0, F : ωn → ω, defined by

F (a) = µx(G(a, x) = 0)

is recursive. (Recall that µxP (x) for a relation P is the minimal x ∈ ω such
that x ∈ P obtains.)

Definition. R(⊆ ωk) is called recursive, or computable (R is a recursive rela-
tion) if χR is a recursive function.

Proofs in this note are adaptation of those in [Sh] into the deduction system described in [E].
Many thanks to Peter Ahumada and Michael Brewer who wrote up this note.
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Properties of Recursive Functions and Relations:
P1. For Q ⊂ ωk a recursive relation, and H1, . . . , Hk : ωn → ω recursive func-

tions,
P = {a ∈ ωn | Q(H1(a), . . . , Hk(a))}

is a recursive relation.

Proof. χP (a) = χQ(H1(a), . . . , Hk(a)) is a recursive function by R2.

P2. For P ⊂ ωn+1, a recursive relation such that for all a ∈ ωn there exists
some x ∈ ω such that P (a, x), then F : ωn → ω, defined by

F (a) = µxP (a, x)

is recursive.

Proof. F (a) = µx(χP (a, x) = 0), so we may apply R3.

P3. Constant functions, Cn,k : ωn → ω such that Cn,k(a) = k, are recursive.

Proof. By induction:

Cn,0(a) = µx(In+1
n+1 (a, x) = 0)

Cn,k+1(a) = µx(Cn,k(a) < x)

are recursive by R3 and P2, respectively.

P4. For Q,P ⊂ ωn, recursive relations, ¬P , P ∨ Q, and P ∧ Q are recursive.

Proof. We have that

χ¬P (a) = χ<(0, χP (a)),

χP ∨Q(a) = χP (a) · χQ(a),

P ∧ Q = ¬(¬P ∨ ¬Q).

P5. The predicates =, ≤, >, and ≥ are recursive.

Proof. For a, b ∈ ω,

a = b iff ¬(a < b) ∧ ¬(b < a),

a ≥ b iff ¬(a < b),

a > b iff (a ≥ b) ∧ ¬(a = b), and

a ≤ b iff ¬(a > b),

hence these are recursive by P4.

Notation. We write, for a ∈ ωn, f : ωn → ω a function and P ⊂ ωm+1 a relation,

µx<f(a)P (x, b) ≡ µx(P (x, b) ∨ x = f(a)).

In particular, µx<f(a)P (x, b) is the smallest integer less than f(a) which satisfies
P , if such exists, or f(a), otherwise.

We also write

∃x<f(a) P (x) ≡ (µx<f(a) P (x)) < f(a), and

∀x<f(a) P (x) ≡ ¬(∃x<f(a) (¬P (x))).
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The first is clearly satisfied if some x < f(a) satisfies P (x), while the second is
satisifed if all x < f(a) satisfy P (x).

P6. For P ⊂ ωn+1 a recursive relation, F : ωn+1 → ω, defined by

F (a, b) = µx<a P (x, b),

is recursive.

Proof. F (a, b) = µx(P (x, b) ∨ x = a), and thus F is recursive by P2, since
for all b, a satisfies P (x, b) ∨ x = a.

P7. For R ⊂ ωn+1 a recursive relation, P,Q ⊂ ωn+1 such that

P (a, b) ≡ ∃x<a R(x, b)

Q(a, b) ≡ ∀x<a R(x, b)

are recursive.

Proof. Note that P is defined by composition of recursive functions and
predicates, hence recursive by P1, and Q is defined by composition of re-
cursive functions, recursive predicates, and negation, hence recursive by P1
and P4.

P8. −̇ : ω × ω → ω, defined by

a−̇b =

{
a− b if a ≥ b,
0 otherwise,

is recursive.

Proof. Note that

a−̇b = µx(b + x = a ∨ a < b).

P9. If G1, . . . , Gk : ωn → ω are recursive functions, and R1, . . . , Rk ⊂ ωn are
recursive relations partitioning ωn (i.e., for each a ∈ ωn, there exists a
unique i such that Ri(a)), then F : ωn → ω, defined by

F (a) =





G1(a) if R1(a),
G2(a) if R2(a),
...

...
Gk(a) if Gk(a),

is recursive.

Proof. Note that

F = G1χ¬R1 + · · ·+ Gkχ¬Rk
.
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P10. If Q1, . . . , Qk ⊂ ωn are recursive relations, and R1, . . . , Rk ⊂ ωn are recur-
sive relations partitioning ωn, then P ⊂ ωn, defined by

P (a) iff





Q1(a) if R1(a),
...

...
Qk(a) if Rk(a),

is recursive.

Proof. Note that

χP (a) =





χQ1(a) if R1(a),
...

...
χQk

(a) if Rk(a),

is recursive by P9.

Definition. A relation P ⊂ ωn is recursively enumerable (r.e.) if there exists
some recursive relation Q ⊂ ωn+1 such that

P (a) iff ∃xQ(a, x).

Remark If a relation R ⊂ ωn is recursive, then it is recursively enumerable, since
R(a) iff ∃x(R(a) ∧ x = x).

Negation Theorem. A relation R ⊂ ωn is recursive if and only if R and ¬R are
recursively enumerable.

Proof. If R is recursive, then ¬R is recursive. Hence by above remark, both are r.e.
Now, let P and Q be recursive relations such that for a ∈ ωn, R(a) iff ∃xQ(a, x)

and ¬R(a) iff ∃xP (a, x).
Define F : ωn → ω by

F (a) = µx(Q(a, x) ∨ P (a, x)),

recursive by P2, since either R(a) or ¬R(a) must hold.
We show that

R(a) iff Q(a, F (a)).
In particular, Q(a, F (a)) implies there exists x (namely, F (a)) such that Q(a, x),
thus R(a) holds. Further, if ¬Q(a, F (a)), then P (a, F (a)), since F (a) satisfies
Q(a, x) ∨ P (a, x). Thus ¬R(a) holds.

The β-Function Lemma.

β-Function Lemma (Gödel). There is a recursive function β : ω2 → ω such that
β(a, i) ≤ a−̇1 for all a, i ∈ ω, and for any a0, a1, . . . , an−1 ∈ ω, there is an a ∈ ω
such that β(a, i) = ai for all i < n.

Remark 1. Let A = {a1, ...an} ⊆ ω r {0, 1} (n ≥ 2) be a set such that any two
distinct elements of A are realtively prime. Then given non-empty subset B of A,
there is y ∈ ω such that for any a ∈ A, a|y iff a ∈ B. (y is a product of elements in
B.)

Lemma 2. If k|z for z 6= 0, then (1 + (j + k)z, 1 + jz) are relatively prime for any
j ∈ ω.
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Proof. Note that for p prime, p|z implies that p/|1 + jz. But if p|1 + (j + k)z and
p|1 + jz, then p|kz, implying p|k|z or p|z, and thus p|z, a contradiction.

Lemma 3. J : ω2 → ω, defined by J(a, b) = (a + b)2 + (a + 1), is one-to-one.

Proof. If a + b < a′ + b′, then

J(a, b) = (a+b)2+a+1 ≤ (a+b)2+2(a+b)+1 = (a+b+1)2 ≤ (a′+b′)2 < J(a′, b′).

Thus if J(a, b) = J(a′, b′), then a + b = a′ + b′, and

0 = J(a′, b′)− J(a, b) = a′ − a,

implying that a = a′ and b = b′, as desired.

Proof of β-Function Lemma. Define

β(a, i) = µx<a−̇1 (∃y<a (∃z<a (a = J(y, z) ∧Div(1 + (J(x, i) + 1) · z, y)))),

where Div(x, y) ≡ ∃z < y + 1 (y = z · x) (satisfied iff x|y) is recursive. It is clear
that β is recursive, and that β(a, i) ≤ a−̇1.

Given a1, . . . , an−1 ∈ ω, we want to find a ∈ ω such that β(a, i) = ai for all
i < n. Let

c = max
i<n

{J(ai, i) + 1},
and choose z ∈ ω, nonzero, such that for all j < c nonzero, j|z.

By Lemma 2, for all j, l such that 1 ≤ j < l ≤ c, (1 + jz, 1 + lz) are relatively
prime, since 0 < l − j < c implies that (l − j)|z. By Remark 1, there exists y ∈ ω
such that for all j < c,

1 + (j + 1)z | y iff j = J(ai, i) for some i < n. (∗)
Let a = J(y, z).

We note the following, for each ai:
(i) ai < y < a and z < a;

In particular, y, z < a by the definition of J , and that ai < y by (∗).
(ii) Div(1 + (J(ai, i) + 1) · z, y);

From (∗).
(iii) For all x < ai, 1 + (J(x, i) + 1)z/|y;

Since J is one-to-one, x < ai implies J(x, i) 6= J(ai, i), and for j 6= i,
J(x, i) 6= J(aj , j). Thus, by (∗), x does not satisfy the required predicate
for y and z as chosen above.

Since for any other y′ and z′, a = J(y, z) 6= J(y′, z′), we have that ai is in fact
the minimal integer satisfying the predicate defining β, and thus β(a, i) = ai, as
desired.

The β-function will be the basis for various systems of coding. Our first use will
be in encoding sequences of numbers:

Definition. The sequence number of a sequence of natural numbers a1, . . . , an,
is given by

<a1, . . . an >= µx(β(x, 0) = n ∧ β(x, 1) = a1 ∧ · · · ∧ β(x, n) = an).
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Note that the map <> is defined on all sequences due to the properties of β
proved above. Further, since β is recursive, <> is recursive, and <> is one-to-one,
since

<a1, . . . , an >= <b1, . . . , bm >

implies that n = m and ai = bi for each i. Note, too, that the sequence number of
the empty sequence is

<>= µx(β(x, 0) = 0) = 0.

An important feature of our coding is that we can recover a given sequence from
its sequence number:

Definition. For each i ∈ ω, we have a function ()i : ω → ω, given by

(a)i = β(a, i).

Clearly ()i is recursive for each i. ()0 will be called the length and denoted lh.

As intended, it follows from these definitions that ( < a1 . . . an >)i = ai and
lh( <a1 . . . an >) = n.

Note also that whenever a > 0, we have lh(a) < a and (a)i < a.

Definition. The relation Seq ⊂ ω is given by

Seq(a) iff ∀x < a(lh(x) 6= lh(a) ∨ ∃i < lh(a)((x)i+1 6= (a)i+1).

That Seq is recursive is evident from properties enumerated above. From our
definition, it is clear that Seq(a) if and only if a is the sequence number for some
sequence (in particular, a = <(a)1, . . . , (a)lh(a) >). Note that

¬Seq(a) iff ∃x < a(lh(x) = lh(a) ∧ ∀i < lh(a)((x)i+1 = (a)i+1).

Definition. The initial sequence function Init : ω2 → ω is given by

Init(a, i) = µx(lh(x) = i ∧ ∀j < i((x)j+1 = (a)j+1).

Again, Init is evidently recursive. Note that for 1 ≤ i ≤ n,

Init( <a1, . . . , an >, i) = <a1, . . . , ai >,

as intended.

Definition. The concatenation function ∗ : ω2 → ω is given by

a ∗ b = µx(lh(x) = lh(a) + lh(b)

∧ ∀i < lh(a)((x)i+1 = (a)i+1) ∧ ∀j < lh(b)((x)lh(a)+j+1 = (b)j+1).

Note that ∗ is recursive, and that

<a1 . . . an > ∗ <b1 . . . bm >= <a1 . . . an, b1 . . . bm >,

as desired.

Definition. For F : ω × ωk → ω, we define F : ω × ωk → ω by

F (a, b) = <F (0, b), . . . , F (a− 1, b)>,

or, equivalently,
µx(lh(x) = a ∧ ∀i < a((x)i+1 = F (i, b))).

Note that F (a, b) = (F (a + 1, b))a+1, thus we have that F is recursive if and
only if F is recursive. Because F (a, β) is defined in terms of values F (x, β), for x
strictly smaller than a, this construction will enable us to define F inductively.
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Properties of Recursive Functions and Relations (continued):

P11. For G : ω×ω×ωn → ω a recursive function, the function F : ω×ωn → ω,
given by

F (a, b) = G(F (a, b), a, b),

is recursive.

Proof. Note that

F (a, b) = G(H(a, b), a, b)

where

H(a, b) = µx(Seq(x) ∧ lh(x) = a ∧ ∀i < a((x)i+1 = G(Init(x, i), i, b)).

According to this definition, F (0, b) = G( <>, 0, b) = G(0, 0, b),

F (1, b) = G( <G(0, 0, b)>, 1, b),

and
F (2, b) = G( <G(0, 0, b), G( <G(0, 0, b)>, 1, b)>, 2, b),

showing that computation is cumbersome, but possible, for any particular value a.

P12. For G : ω × ωn → ω and H : ω × ωn → ω, F : ω × ωn → ω, defined by

F (a, b) =

{
F (G(a, b), b) if G(a, b) < a, and
H(a, b) otherwise,

is recursive.

Proof. Note that when G(a, b) < a, we have

F (G(a, b), b) = (F (a, b))G(a,b)+1,

which is recursive by P11.

For most purposes, when we define a function F inductively by cases, we must
satisfy two requirements to guarantee that our function is well-defined. First, if
F (x, b) appears in a defining case involving a, we must show that x < a whenever
this case is true. Second, we must show that our base case is not defined in terms
of F . In particular, this means that we cannot use F in a defining case which is
used to compute F (0, β).

P13. Given recursive G : ωn → ω and H : ω2 × ωn → ω, F : ω × ωn → ω, given
by

F (a, b) =

{
H(F (a− 1, b), a− 1, b) if a > 0, and
G(b) otherwise,

is recursive.

Proof. Note that F has the form of P12.
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P14. Given recursive relations Q ⊂ ωn+1 and R ⊂ ωn+1 and recursive H :
ω × ωn → ω such that H(a, b) < a whenever Q(a, b) holds, the relation
P ⊂ ωn+1, given by

P (a, b) iff

{
P (H(a, b), b) if Q(a, b),
R(a, b) otherwise,

is recursive.

Proof. Define H ′ : ω × ωn → ω by

H ′(a, b) =

{
H(a, b) if Q(a, b), and
a otherwise.

H ′ is clearly recursive. Note

χP (a, b) =

{
χP (H ′(a, b), b) if H ′(a, b) < a, and
χR(a, b) otherwise.

The following example will prove useful:

Definition. Let A ⊂ ω2 be given by

A(a, c) iff Seq(c) ∧ lh(c) = a ∧ ∀i < a((c)i+1 = 0 ∨ (c)i+1 = 1),

and let F : ω2 → ω be given by

F (a, i) =





µx(A(a, x)) if i = 0,
µx(F (a, i− 1) < x ∧A(a, x) if 0 < i < 2a, and
0 otherwise.

Then the function bd : ω → ω is given by

bd(n) = F (n, 2n − 1).

Evidently, A, F , and bd are all recursive. In fact,

bd(n) = max{< c1c2...cn > | ci = 0 or 1}.

Step 1: Representability of Recursive Functions in Q

We define Q, a subtheory of the natural numbers, and prove the Representability
Theorem, stating that all recursive functions are representable in this subtheory.

Consider the language of natural numbers LN = {+, ·, S, <, 0}. We specify the
theory Q with the following axioms.

Q1. ∀x Sx 6= 0.
Q2. ∀x∀y Sx = Sy → x = y.
Q3. ∀x x + 0 = x.
Q4. ∀x∀y x + Sy = S(x + y).
Q5. ∀x x · 0 = 0.
Q6. ∀x∀y x · Sy = x · y + x.
Q7. ∀x ¬(x < 0).
Q8. ∀x∀y x < Sy ←→ x < y ∨ x = y.
Q9. ∀x∀y x < y ∨ x = y ∨ y < x.
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Note that the natural numbers, N, are a model of the theory Q. If we add to
this theory the set of all generalizations of formulas of the form

(ϕx
0 ∧ ∀x(ϕ → ϕx

Sx)) → ϕ,

providing the capability for induction, we call this theory Peano Arithmetic, or PA.
Thus Q ⊂ PA, and PA ` Q.

Notation. We define, for a natural number n,

n ≡ SS . . . S︸ ︷︷ ︸
n

0.

Definition. A function f : ωn → ω is representable in Q if there exists an
LN-formula ϕ(x1, . . . , xn, y) such that

Q ` ∀y(ϕ(k1, . . . , kn, y) ←→ y = f(k1, . . . , kn))

for all k1, . . . , kn ∈ ω. We say ϕ represents f in Q.

Definition. A relation P ⊂ ωn is representable in Q if there exists an LN-formula
ϕ(x1, . . . , xn) such that for all k1, . . . , kn ∈ ω,

P (k1, . . . , kn) → Q ` ϕ(k1, . . . , kn)

and
¬P (k1, . . . , kn) → Q ` ¬ϕ(k1, . . . , kn).

Again, we say that ϕ represents P in Q.

To prove the Representability Theorem, we will require the following:

Lemma 1. If m = n, then Q ` m = n, and if m 6= n, then Q ` ¬(m = n).

Proof. It is enough to demonstrate this for m > n. For n = 0, our result follows
from axiom Q1. Assume, then, that the result holds for k = n and all l > k. Then
we have that, for a given m > n + 1, Q ` m− 1 6= n. By axiom Q2 we have,
Q ` m− 1 6= n → m 6= n + 1. Hence we conclude that Q ` m 6= n + 1, and the
result holds for k = n + 1, as required.

Lemma 2. Q ` m + n = m + n.

Proof. For n = 0, our result follows from axiom Q3. Assume, then, that the result
holds for k = n. We must show it holds for k = n + 1 as well. But Q ` m + n =
m + n, and we obtain Q ` m + n + 1 = m + n + 1 by Q4.

Lemma 3. Q ` m · n = m · n
Proof. For n = 0, our result follows from axiom Q5. Assume, then, that the
result holds for k = n. Then Q ` m · n = mn. Applying Q6, we have that
Q ` m · n + 1 = mn + m, and applying the previous lemma, we have the result for
k = n + 1, as required.

Lemma 4. If m < n, then Q ` m < n. Further, if m ≥ n, we have Q ` ¬(m < n).

Proof. For n = 0, the result follows from Q7. Assume, then, that the results hold
for k = n. We show both claims hold for k = n + 1 as well.

First, suppose m < n + 1. Either m < n, and Q ` m < n by the induction
hypothesis, or m = n, and Q ` m = n by Lemma 1. In either case, by Q8, we have
that Q ` m < n + 1.
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Second, suppose m ≥ n + 1. Then m > n and by the induction hypothesis,
Q ` ¬(m < n). By Lemma 1, we also have Q ` ¬(m = n). Applying Q8 and Rule
T, we have Q ` m > n. Again applying Rule T, we have that Q ` ¬(m < n + 1),
as desired.

Lemma 5. For any relation P ⊂ ωn, P is representable in Q if and only if χP is
representable.

Proof. Assume P is representable and that ϕ(x1 . . . xn) represents P . Let

ψ(x, y) ≡ (ϕ(x) ∧ y = 0) ∨ (¬ϕ(x) ∧ y = 1).

We claim ψ(x, y) represents χP :
Suppose P (k1, . . . , kn) holds. Then Q ` ϕ(k1, . . . , kn). Now since

ϕ(k1, . . . , kn) → (y = 0 ←→ ψ(k1, . . . , kn, y))

is a tautology, we have Q ` y = 0 ←→ ψ(k1, . . . , kn, y), as required. Similarly, if
¬P (k1, . . . , kn) holds, then Q ` ¬ϕ(k1, . . . , kn), and since

` ¬ϕ(k1, . . . , kn) → (y = 1 ←→ ψ(k1, . . . , kn, y),

we obtain that Q ` y = 1 ←→ ψ(k1, . . . , kn, y), as required. Thus, ψ(x, y) repre-
sents χP .

Assume now that ψ(x, y) represents χP . Then ψ(x, 0) represents P .
In particular, when P (k1, . . . , kn) holds, we have

Q ` ψ(k1, . . . , kn, y) ←→ y = 0.

Substitution of y by 0 yields Q ` ψ(k1, . . . , kn, 0), as desired. Similarly, when
¬P (k1, . . . , kn) holds, we have

Q ` ψ(k1 . . . kn, y) ←→ y = 1,

and because Q ` ¬(0 = 1) we may conclude Q ` ¬ψ(k1 . . . kn, 0), as needed. Thus
is P representable.

Lemma 6. For a formula ϕ in LN,

Q ` ϕx
0 → · · · → (ϕx

k−1 → (x < k → ϕ))

Proof. The proof is by induction on k. When k is 0, we have

Q ` (x < 0 → ϕ).

This is (vacuously) true by axiom Q7. Now, assume that

Q ` ϕx
0 → . . . → (ϕx

k−1 → (x < k → ϕ)).

We must show that

Q ` ϕx
0 → · · · → (ϕx

k → (x < k + 1 → ϕ)).

Equivalently, we want to show that Γ ` ϕ where Γ = Q ∪ {ϕx
0 , ..., ϕx

k, x < k + 1}.
By Q8, Γ ` x < k ∨ x = k. In the first case, the inductive hypothesis implies that
Γ ` ϕ, while in the latter case, |= x = k → (ϕx

k ←→ ϕ), and hence Γ ` ϕ. By either
route, Γ proves ϕ.

Lemma 7. If (a) Q ` ¬ϕx
k for k < n, and (b) Q ` ϕx

n, then for z 6= x not appearing
in ϕ,

Q ` (ϕ ∧ ∀z(z < x → ¬ϕx
z )) ←→ x = n.
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Proof. We define
ψ ≡ (ϕ ∧ ∀z(z < x → ¬ϕx

z )).
Now, we obtain

|= x = n → (ψ ←→ (ϕx
n ∧ ∀z(z < n → ¬ϕx

z ))). (∗)
By (a) and Lemma 6, we get

Q ` x < n → ¬ϕ, (∗∗)
and, applying substitution and generalization, we obtain

Q ` ∀z(z < n → ¬ϕx
z ).

Combining this with (b) and (∗), we conclude

Q ` x = n → ψ.

For the reverse implication, we note that

|= ∀z(z < x → ¬ϕx
z ) → (n < x → ¬ϕx

n),

and thus (b) implies Q ` ψ → ¬(n < x). Now Q∪{ψ, x < n} ` ϕ ∧ ¬ϕ by (∗∗) and
the definition of ψ. Therefore Q ` ψ → ¬(x < n) and by Axiom Q9 we conclude
Q ` ψ → x = n.

Representability Theorem. Every recursive function or relation is representable
in Q.

Proof. It suffices to prove representability of functions having the forms enumerated
in the definition of recursiveness:

R1. In
i , +, ·, and χ<.

The latter three are representable by Lemmas 2, 3, and 4. In particular,
for +, say, we have that ϕ(x1, x2, y) ≡ y = x1 +x2 represents + in Q, since
for any m,n ∈ ω,

Q ` m + n = m + n,

Q ` y = m + n ←→ y = m + n,

Q ` ϕ(m,n, y) ←→ y = m + n, and hence

Q ` ∀y(ϕ(m,n, y) ←→ y = m + n),

as required. · and χ< are similar (with χ< making additional use of Lemma
5).

In
i is representable by ϕ(x1, . . . , xn, y) ≡ xi = y. In particular, for any

k1, . . . , kn ∈ ω, In
i (k1, . . . , kn) = ki, and hence

Q ` ϕ(k1, . . . , kn, y) ←→ y = ki ←→ y = In
i (k1, . . . , kn),

by our choice of ϕ. Generalization completes the result.
R2. F (a) = G(H1(a), . . . , Hk(a)), where G and each of the Hi are representable.

Assume that G is represented in Q by ϕ and the Hi are represented in
Q by ψi, respectively. We show that F is represented by

α(x, y) ≡ ∃z1, . . . , zk(ψ1(x, z1) ∧ · · · ∧ ψk(x, zk) ∧ ϕ(z1, . . . , zk, y)).

In other word we want to show, for any a1, ..., an ∈ ω,

Q ` α(a1, . . . , an, y) ←→ y = G(H1(a), . . . , Hk(a)) (†)
where a = (a1...an).
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Now, for Γ = Q ∪ {α(a1, . . . , an, y)}, since the ψi represent Hi, we have
that Γ ` ∃z1, . . . , zk(z1 = H1(a) ∧ · · · ∧ zk = Hk(a) ∧ ϕ(z1, . . . , zk, y)).
Hence we have

Γ |= ∃z1, . . . , zk(ϕ(H1(a), . . . , Hk(a), y)),

and since the zi do not appear,

Γ |= ϕ(H1(a), . . . , Hk(a), y).

Since ϕ represents G, we have

Γ |= y = G(H1(a), . . . , Hk(a)),

as required.
On the other hand, for Σ = Q ∪ {y = G(H1(a), . . . , Hk(a))},

Σ ` ϕ(H1(a), . . . , Hk(a), y)

Σ ` ∃z1, . . . , zk(z1 = H1(a) ∧ · · · zk = Hk(a) ∧ ϕ(z1, . . . , zk, y))

Σ ` ∃z1, . . . , zk(ψ1(a, zi) ∧ · · ·ψk(a, zk) ∧ ϕ(z1, . . . , zk, y))

Σ ` α(a1, . . . , an, y)

Thus (†) is established.
R3. F (a) = µx(G(a, x) = 0), where G is representable in Q and for all a there

exists x such that G(a, x) = 0, is representable in Q.
Assume G is represented in Q by ϕ(x1, . . . , xn, x, y). Let

ψ(x1, . . . , xn, x) ≡ ϕy
0 ∧ ∀z(z < x → ¬ϕyx

0z ).

Let F (a) = b and ki = G(a, i) for i ∈ ω. Then

Q ` ϕ(a1, . . . , an, i, y) ←→ y = ki,

thus

Q ` ϕ(a1, . . . , an, i, 0) ←→ 0 = ki,

. Hence now if j < b, so that kj 6= 0, then

Q ` ¬ϕ(a1, . . . , an, j, 0).

On the other hand, kb = 0, so

Q ` ϕ(a1, . . . , an, b, 0).

Hence, by Lemma 7,

Q ` (ϕ(a, x, y)y
0 ∧ ∀z(z < x → ¬ϕ(a, x, y)y

0
x
z )) ←→ x = b,

and thus,

Q ` ψ(a, x) ←→ x = b.

By generalization, we have that ψ represents F in Q, as desired.
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Step 2: Axiomatizable Complete Theories are Decidable

We begin by showing that we may encode terms and formulas of a reasonable
language in such a way that important classes of formulas, e.g., the logical axioms,
are mapped to recursive subsets of the natural numbers. We use this to derive the
main result.

Definition. Let L be a countable language with subsets C, F, and P of constant,
function, and predicate symbols, respectively (=∈ P). Let V be a set of variables
for L. L is called reasonable if the following two functions exist:

• h : L∪{¬,→, ∀}∪V → ω injective such that V = h(V), C = h(C), F = h(F),
and P = h(P) are all recursive.

• AR : ω → ω r {0} recursive such that AR(h(f)) = n and AR(h(P )) = n
for n-ary function and predicate symbols f and P .

For the rest of this note, the language L is countable and reasonable.

Now we define a coding de : {L-terms and L-formulas} → ω inductively, by
• For x ∈ V ∪ C, dxe = <h(x)>.
• For u1, . . . , un ∈ V ∪ C and f ∈ F,

dfu1u2 . . . une = <h(f), du1e, du2e, . . . , dune> .

• For L-terms t1, . . . , tn and P ∈ P,

dPt1t2 . . . tne = <h(P ), dt1e, . . . , dtne> .

• For L-formulas ϕ and ψ,

dϕ → ψe = <h(→), dϕe, dψe>,

d¬ϕe = <h(¬), dϕe>,

d∀xϕe = <h(∀), dxe, dϕe> .

Note that our definition of de is one-to-one. Given a term or formula σ, we call
dσe the Gödel number of σ.

We show the following predicates and functions are recursive (We follow defini-
tions for syntax in [E].):

(1) Vble = {dve | v ∈ V} ⊂ ω and Const = {dce | c ∈ C} ⊂ ω.

Proof. Note

Vble(x) iff x = <(x)1 > ∧V((x)1),

Const(x) iff x = <(x)1 > ∧C((x)1).

(2) Term = {dte | t an L-term} ⊂ ω.

Proof. Note

Term(a) iff





∀j <(lh(a)−̇1)Term((a)j+2) if Seq(a) ∧ F((a)1)
∧ AR((a)1) = lh(a)−̇1,

Vble(a) ∨ Const(a) otherwise.

(3) AtF = {dσe | σ an atomic L-formula} ⊂ ω.
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Proof. Note

AtF(a) iff Seq(a) ∧ P((a)1) ∧ (AR((a)1) = lh(a)−̇1)

∧ ∀j <(lh(a)−̇1) (Term((a)j+2)).

(4) Form = {dϕe | ϕ an L-formula} ⊂ ω.

Proof. Note

Form(a) iff





Form((a)2) if a = <h(¬), (a)2 >,
Form((a)2) ∧ Form((a)3) if a = <h(→), (a)2, (a)3 >,
Vble((a)2) ∧ Form((a)3) if a = <h(∀), (a)2, (a)3 >,
AtF (a) otherwise.

(5) Sub : ω3 → ω, such that Sub(dte, dxe, due) = dtxue and Sub(dϕe, dxe, due) =
dϕx

ue for terms t and u, variable x, and formula ϕ.

Proof. Define

Sub(a, b, c) =





c if Vble(a) ∧ a = b,
<(a)1,Sub((a)2, b, c), . . . if lh(a) > 1 ∧ (a)1 6= h(∀)

. . . ,Sub((a)lh(a), b, c)> ∧Seq(a),
<(a)1, (a)2,Sub((a)3, b, c)> if a = <h(∀), (a)2, (a)3 >,

∧ (a)2 6= b

a otherwise.

Note that, if well-defined, the function has the properties desired above.
We show Sub is well-defined by induction on a: a = 0 falls into the

first or last category since lh(0) = 0, hence Sub(0, b, c) is well-defined for
all b, c ∈ ω. If a 6= 0, then (a)i < a for all i ≤ lh(a), and thus we may
assume the values Sub((a)i, b, c) are well-defined, showing Sub(a, b, c) to be
well-defined in all cases.

(6) Free ⊂ ω2, such that for formula ϕ, term τ , and variable x, Free(dϕe, dxe)
if and only if x occurs free in ϕ, and Free(dτe, dxe) if and only if x occurs
in τ

Proof. Define

Free(a, b) iff





∃j <(lh(a)−̇1) (Free((a)j+2, b)) if lh(a) > 1 ∧ (a)1 6= h(∀),
Free((a)3, b) ∧ (a)2 6= b if lh(a) > 1 ∧ (a)1 = h(∀),
a = b otherwise.

Free clearly has the desired property, and that it is well-defined follows by
essentially the same induction on a as above.

(7) Sent = {dϕe | ϕ is an L-sentence} ⊂ ω.

Proof. Note

Sent(a) iff Form(a) ∧ ∀b<a (¬Vble(b) ∨ ¬Free(a, b)).
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(8) Subst(a, b, c) ⊂ ω3 such that for a given formula ϕ, variable x, and term t,
Subst(dϕe, dxe, dte) if and only if t is substitutable for x in ϕ.

Proof. Define

Subst(a, b, c) iff





Subst((a)2, b, c) if a = <h(¬), (a)2 >,
Subst((a)2, b, c) ∧ Subst((a)3, b, c) if a = <h(→), (a)2, (a)3 >,
¬Free(a, b) ∨ (¬Free(c, (a)2) if a = <h(∀), (a)2, (a)3 >,

∧Subst((a)3, b, c))
0 = 0 otherwise.

Note that Subst has the desired property, and is well-defined by essentially
the same induction used above.

(9) We define

False(a, b) iff





¬False((a)2, b) ∧ False((a)3, b) if a = <h(→), (a)2, (a)3 >

∧Form((a)2) ∧ Form((a)3),
¬False((a)2, b) if a = <h(¬), (a)2 > ∧Form((a)2),
Form(a) ∧ (b)a = 0 otherwise.

False is recursive by the same induction as applied above. We note the
significance of False presently.

To each b ∈ ω, we may associate a truth assignment vb such that for a prime
formula ψ (atomic or of the form ∀xϕ),

vb(ψ) = F iff (b)dψe = 0.

Further, for any truth assignment v : A → {T,F}, where A is a finite set of prime
formulas, there exists a b such that v = vb: we may write A = {ϕ1, . . . , ϕn} such
that dϕ1e < dϕ2e < · · · < dϕne. For 1 ≤ j ≤ dϕne define cj = 0 when j = dϕie
for some i ≤ n and v(ϕi) = F , and cj = 1 otherwise. Then b = < c1, . . . , cdϕne >
satisfies vb = v on A.

Then moreover, for any formula ϕ built up from A,

v(ϕ) = F iff vb(ϕ) = F iff False(dϕe, b).
(10) Define Taut = {dσe | σis a tautology} ⊂ ω.

Proof. Recall bd : ω → ω such that bd(a) = max{ < c1, . . . , ca > | ci ∈
{0, 1}}, recursive, has been previously defined. Define

Taut(a) iff Form(a) ∧ ∀b<(bd(a) + 1) (¬False(a, b)).

(11) AG2 = {dϕe | ϕ is in axiom group 2} ⊂ ω.

Proof. Recall axiom group 2 contains formulas of the form ∀xψ → ψx
t , with

term t substitutable for x in ψ. Thus

AG2(a) iff ∃x, y, z<a (Vble(x) ∧ Form(y) ∧ Term(z) ∧ Subst(y, x, z)

∧ a = <h(→), <h(∀), x, y>,Sub(y, x, z)>),

where ∃x, y, z<a P (x, y, z) abbreviates what one would expect.

(12) AG3 = {dϕe | ϕ is in axiom group 3} ⊂ ω.
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Proof. Recall we take axiom group 3 to be the formulas having the following
form: ∀x(ψ → ψ′) → (∀xψ → ∀xψ′). Thus

AG3(a) iff ∃x, y, z<a (Vble(x) ∧ Form(y) ∧ Form(z)

∧ a = <h(→), <h(∀), x, <h(→), y, z>>,

<h(→), <h(∀), x, y>, <h(∀), x, z>>>)

(13) AG4 = {dϕe | ϕ is in axiom group 4} ⊂ ω.

Proof. Recall axiom group 4 contains formulas of the form ψ → ∀xψ, where
x does not occur free in ψ. Thus

AG4(a) iff ∃x, y<a (Vble(x) ∧ Form(y)

∧ ¬Free(y, x) ∧ a = <h(→), y, <h(∀), x, y>>)

(14) AG5 = {dϕe | ϕ is in axiom group 5} ⊂ ω.

Proof. Recall axiom group 5 contains formulas of the form x = x, for a
variable x, hence

AG5(a) iff ∃x<a (Vble(x) ∧ a = <h(=), x, x>).

(15) AG6 = {dϕe | ϕ is in axiom group 6} ⊂ ω.

Proof. Recall formulas of axiom group 6 have the form x = y → (ψ → ψ′),
where ψ is an atomic formula and ψ′ is obtained by from ψ by replacing
one or more occurrences of x with y. Thus

AG6(a) iff ∃x, y, b, c<a (Vble(x) ∧ Vble(y) ∧ AtF(b) ∧ AtF(c)

∧ lh(b) = lh(c) ∧ ∀j < lh(b) + 1((c)j = (b)j ∨ ((c)j = y ∧ (b)j = x))

∧ a = <h(→), <h(=), x, y>, <h(→), b, c>>)

(16) Gen(a, b) ⊂ ω2, such that Gen(dϕe, dψe) if and only if ϕ is a generalization
of ψ (i.e., ϕ = ∀x1 . . . ∀xnψ for some finite {xi} ⊂ V).

Proof. Note that

Gen(a, b) iff





a = <h(∀), (a)2, (a)3 > ∧Vble((a)2) ∧ Gen((a)3, b) if a > b,
0 = 0 if a = b,
0 = 1 if a < b.

(17) Λ = {dσe | σ ∈ Λ} ⊂ ω, where Λ is the set of logical axioms.
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Proof. Note that

Λ(a) iff ∃b<a + 1 (Form(a) ∧ Gen(a, b)

∧ (Taut(b) ∨ AG2(b) ∨ AG3(b) ∨ AG4(b) ∨ AG5(b) ∨ AG6(b)))

We have, to this point, defined three codings: <> on sequences of natural num-
bers, h on the language and logical symbols, and de on the terms and formulas. We
presently define a fourth coding, of sequences of formulas:

ddee : {sequences of L-formulas} → ω,

given by
ddϕ1, . . . , ϕnee = <dϕ1e, . . . , dϕne> .

This map is one-to-one, as it is derived from the established (injective) codings,
and in particular, we can determine, for a given number, if it lies in the image of
ddee, and, if so, recover the associated sequence of formulas.

Definition. Given L, let T be a theory (a collection of sentences) in L. Define

T = {dσe | σ ∈ T}.
We say that T is axiomatizable if there exists a theory S, axiomatizing T (that
is, such that Cn S = Cn T ), such that S is recursive. We say that T is decidable
if CnT is recursive.

We shall make use of the following relations:
• DedT = {ddϕ1, . . . , ϕnee | ϕ1, . . . , ϕn is a deduction from T} ⊂ ω.

Note that

DedT (a) iff Seq(a) ∧ lh(a) 6= 0

∧∀j < lh(a) (Λ((a)j+1)∨T ((a)j+1)∨∃i, k<j+1 ((a)k+1 =<h(→), (a)i+1, (a)j+1 >))

• PrfT ⊂ ω2, given by PrfT (a, b) iff DedT (b) ∧ a = (b)lh(b).
• PfT ⊂ ω, given by PfT (a) iff Sent(a) ∧ ∃xPrfT (a, x).

Note that we may read PrfT (a, b) as “b is a proof of a from T ,” and PfT (a) as
“a is a sentence provable from T .” In particular

PfT = Cn T = {dσe | T ` σ}.
We use this fact to prove the following:

Theorem. If T is axiomatizable, then PfT = Cn T is recursively enumerable.

Proof. Let S axiomatize T , where S is recursive. From the above definitions, we
see that DedS and PrfS are recursive relations, hence PfS is an r.e. relation. But
PfS = PfT , since Cn S = CnT .

Theorem. If T is axiomatizable and complete in L, then T is decidable.

Proof. By the negation theorem, it suffices to show that ¬PfT is recursively enu-
merable. Note that since T is complete, for any sentence σ, T 0 σ if and only if
T ` ¬σ. Hence

¬PfT (a) iff ¬Sent(a) ∨ ∃mPrfT ( <h(¬), a>, m)

iff ∃m(¬Sent(a) ∨ PrfT ( <h(¬), a>, m)).
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Thus ¬PfT is recursively enumerable, and PfT is recursive.

We can see that if we say T is axiomatizable in wider sense when S axiomatiz-
ing T is recursively enumerable, then the above two theorems still hold with this
seemingly weaker notion. In fact, two notions are equivalent, which is known as
Craig’s Theorem.

Step 3: The Incompleteness Theorems and Other Results

We return now to the language of natural numbers, LN. Recall that we define,
for a natural number n,

n ≡ SS . . . S︸ ︷︷ ︸
n

0.

Definition. The diagonalization of an LN formula ϕ is a new formula

d(ϕ) ≡ ∃v0(v0 = dϕe ∧ ϕ),

where ∃ and ∧ provide the usual abbreviations in LN.

In particular, we note d(ϕ) is satisfiable precisely when ϕ is satisfiable by some
truth assignment taking v0 to the Gödel number of ϕ, and LN |= d(ϕ) precisely
when ϕ is satisfied by every truth assignment taking v0 to dϕe.
Lemma. There exists a recursive function dg : ω → ω such that for any LN

formula, dg(dϕe) = dd(ϕ)e.
Proof. Define num : ω → ω by num(0) = <0> and, for n ∈ ω

num(n + 1) = <h(S),num(n)> .

In particular, note that num(n) = dne.
Define

dg(a) = <h(¬), <h(∀), dv0e, <h(¬),

<h(¬), <h(→), <h(=), dv0e, num(a)>, <h(¬), a>>>>>>

Then

dg(dϕe) = <h(¬), <h(∀), dv0e, <h(¬),

<h(¬), <h(→), <h(=), dv0e,num(dϕe)>, <h(¬), dϕe>>>>>>,

= <h(¬), <h(∀), dv0e, <h(¬),

<h(¬), <h(→), <h(=), dv0e, ddϕee>, <h(¬), dϕe>>>>>> .

However, writing out what formula this encodes and introducing our usual abbre-
viations, we have

dg(dϕe) = d¬∀v0¬(¬(v0 = dϕe → ¬ϕ))e
= d∃v0(v0 = dϕe ∧ ϕ)e
= dd(ϕ)e,

as desired.
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Fixed Point Theorem (Gödel). For any LN-formula ϕ(x) (i.e., either a sentence
or a formula having x as the only free variable), there is some LN-sentence σ such
that

Q ` σ ←→ ϕ(dσe).
Proof. Since dg is recursive, it is representable in Q by Step 1, say by ψ(x, y). Then

Q ` ∀y(ψ(n, y) ←→ y = dg(n)).

Let δ(v0) ≡ ∃y(ψ(v0, y) ∧ ϕ(y)), and let n = dδ(v0)e. Define

σ ≡ d(δ(v0)) ≡ ∃v0(v0 = n ∧ δ(v0)).

Then if we let k = dg(n) = dσe, we have

|= σ ←→ δ(n) ←→ ∃y(ψ(n, y) ∧ ϕ(y)).

But
Q ` ψ(n, y) ←→ y = k,

and therefore

Q ` σ ←→ ∃y(y = k ∧ ϕ(y)) ←→ ϕ(k) ←→ ϕ(dσe),
as required.

Tarski Undefinability Theorem. ThN = {dσe | N |= σ} is not definable.

Proof. Suppose Th N were definable by β(x). Then by the fixed point lemma, with
ϕ = ¬β, there exists a sentence σ such that

N |= σ ←→ ¬β(dσe).
Then N |= σ implies that N 6|= β(dσe), implying N 6|= σ, or N |= ¬σ, since Th N

is complete. On the other hand, N 6|= σ implies N |= ¬σ, and thus that N |=
β(dσe), implying N |= σ. The contradictions together imply that β cannot represent
ThN.

Strong Undecidability of Q. Let T be a theory in L ⊃ LN. If T ∪Q is consistent
in L, then T is not decidable in L (Cn T is not recursive).

Proof. Assume that Cn T is recursive. We first show that this implies recursiveness
of Cn T ∪Q. Since Q is finite, it suffices to show that for any sentence τ in the
language, Cn T ∪ {τ} is recursive.

In particular, note that if α ∈ Cn T ∪ {τ}, then τ → α ∈ CnT . Thus

a ∈ Cn T ∪ {τ} iff Sent(a)∧ <h(→), dτe, a>∈ Cn T .

Hence Cn T ∪ {τ} is recursive, as desired.
To prove the theorem, then, it suffices to show that CnT ∪Q is not recursive. If

this were the case, then it would be representable, say by β(x), in Q. By the fixed
point lemma, there exists an LN sentence σ such that

Q ` σ ←→ ¬β(dσe).
If T ∪Q ` σ, then

Q ` β(dσe),
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by the representability of Cn T ∪Q by β(x) in Q. In particular,

Q ` ¬σ,

a contradiction. On the other hand, if T ∪Q 0 σ, then by representability,

Q ` ¬β(dσe),
and hence

Q ` σ,

a contradiction, implying that CnT ∪Q is not representable, and hence not recur-
sive.

Corollary. Th N, PA, and Q are all undecidable.

Proof. We need note only that each of these theories is consistent with Q.

Moreover, we have:

Undecidability of First Order Logic (Church). For a reasonable countable
language L ⊃ LN, the set of all Gödel numbers of valid sentences ({dσe | ∅ ` σ})
is not recursive (the set of valid sentences is not decidable).

In fact, the above corollary is true for any countable L containing a k-ary pred-
icate or function symbol, k ≥ 2, or at least two unary function symbols.

Gödel-Rosser First Incompleteness Theorem. If T is a theory in a countable
reasonable L ⊃ LN, with T ∪ Q consistent and T axiomatizable, then T is not
complete.

Proof. By Step 2, if T is complete, then T is decidable, contradicting the strong
undecidability of Q.

Remarks. In (N, +), 0, <, and S are definable. Hence the same result follows if we
take L′N = {+, ·} instead of our usual LN. In particular, Th(N, +, ·) is undecidable,
and for any T ′ ⊃ Q′ (where Q′ is simply Q written in the language of L′N), we have
that T ′ is, if consistent, undecidable, and, if axiomatizable, incomplete.

It is important to note that for an undecidable theory T , we may have T ⊂ T ′,
where T ′ is a decidable theory. As an example, the theory of groups is undecidable,
whereas the theory of divisible torsion-free groups is decidable.

We turn our attention now to the proof of the result used in Gödel’s original
paper. In particular, Gödel worked in the model (N, +, ·, 0, <, E). (Note that E,
exponentiation, is definable in (N, +, ·, 0, <), or, equivalently, (N, +, ·)).

Let T ⊃ Q be a consistent theory in a reasonable countable language L ⊃ LN,
and presume that T is recursive. Then

T ` σ ⇒ Q ` PfT (dσe).
In particular, T ` σ implies that PrfT (dσe,m) for some m ∈ ω. Since PrfT is

recursive, it is representable in Q, hence Q ` PrfT (dσe,m), and

Q ` ∃xPrfT (dσe, x),

or
Q ` PfT (dσe).
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By the fixed point lemma, there exists a sentence α such that

T ⊃ Q ` α ←→ ¬PfT (dαe). (∗)
If T ` α, then Q ` PfT (dαe), and thus Q ` ¬α, and hence T ` ¬α, a contradiction.
Thus T 0 α.

On the other hand, if T is ω-consistent (i.e., whenever T ` ∃xϕ(x), then for
some n ∈ ω, T 0 ¬ϕ(n)), then T 0 ¬α. In particular, if T ` ¬α, then

T ` PfT (dαe),
by (∗). That is,

T ` ∃xPrfT (dαe, x).

However, if PrfT (dαe,m) for some m ∈ ω, then T ` α, contradicting the consis-
tency of T . Thus we must have ¬PrfT (dαe,m) for all m ∈ ω. Since Q represents
PrfT ,

T ⊃ Q ` ¬PrfT (dαe,m)

for all m ∈ ω, contradicting the ω-consistency of T .
Rosser generalized Gödel’s proof by singling out for T a sentence α such that

T 0 α and T 0 ¬α, without the assumption of ω-consistency.

We now begin our approach to Gödel’s Second Incompleteness Theorem. We fix
T , a theory in a countable reasonable language L ⊃ LN.

We note the following fact from Hilbert and Bernays’ Grundlagen der Mathe-
matik, 1934.

Fact. If T is consistent, T ` PA, and T is recursive, then for any sentences σ and
δ in L,

I. T ` σ ⇒ Q ` PfT (dσe)
II. PA ` (PfT (dσe) ∧ PfT (dσ → δe)) → PfT (dδe)

III. PA ` PfT (dσe) → PfT
(
dPfT (dσe)e

)

Notation. We will write ConT ≡ ¬PfT (d0 6= 0e). Clearly ConT holds if and only
if T is consistent.

Lemma. If T ` σ → δ, then PA ` PfT (dσe) → PfT (dδe).
Proof. If T ` σ → δ, then by (I) above,

PA ` PfT (dσ → δe),
and by (II),

PA ` PfT (dσe) → PfT (dδe).

Gödel’s Second Incompleteness Theorem. If T is consistent, T is recursive,
and T ` PA, then T 0 ConT .

Proof. By the fixed point lemma, there exists σ such that

Q ` σ ←→ ¬PfT (dσe). (†)
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By (III), above,

PA ` PfT (dσe) → PfT
(
dPfT (dσe)e

)
. (‡)

And further, by Lemma, we have

PA ` PfT
(
dPfT (dσe)e

)
→ PfT (d¬σe).

Combining this result with (‡), we have

PA ` PfT (dσe) → PfT (d¬σe).
Now note that ` ¬σ ←→ (σ → (0 6= 0)). By the lemma,

PA ` PfT (dσe) → PfT (dσ → (0 6= 0)e).
In particular,

PA ` PfT (dσe) → PfT (dσe) ∧ PfT (dσ → (0 6= 0)e),
hence, by (II),

PA ` PfT (dσe) → PfT (d0 6= 0e),
i.e.

PA ` PfT (dσe) → ¬ConT .

Thus PA ` ConT → σ, by (†).
Now, suppose that T ` ConT . Then T ` σ, and hence by (I), T ⊃ Q ` PfT (dσe).

But again, by (†), this implies that T ` ¬σ, a contradiction, showing that T cannot
prove its own consistency.

We remark that one may carry the proof through using only the assumption that
T is recursively enumerable.

Löb’s Theorem. Suppose T is a consistent theory in L ⊃ LN, such that T re-
cursive, and T ` PA. Then for any L-sentence σ, if T ` PfT (dσe) → σ, then
T ` σ.

Proof. By the fixed point lemma, there exists δ such that

Q ` δ ←→ (PfT (dδe) → σ).

Since T ` PA ⊃ Q, T proves the same result. From this we may deduce that

PA ` PfT (dδe) → PfT (dσe).
In particular, by our lemma, we have

PA ` PfT (dδe) → PfT
(
dPfT (dδe) → σe

)
,

and, combining this with (III) from above,

PA ` PfT (dδe) → PfT
(
dPfT (dδe)e

)
∧ PfT

(
dPfT (dδe) → σe

)
,

and thus, by (II),
PA ` PfT (dδe) → PfT (dσe),

as desired.
Now assume that T ` PfT (dσe) → σ. Then, by the above,

T ` PfT (dδe) → σ.
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By our choice of δ, this in turn implies that T ` δ. By (I), we have that Q `
PfT (dδe), and hence T proves the same result, implying that T ` σ, as desired.

Remark. Gödel’s Second Incompleteness Theorem in fact follows from Löb’s The-
orem. In particular, given T as in the hypotheses of both theorems, if T ` ConT ,
then

T ` PfT (d0 6= 0e) → 0 6= 0.

But by Löb’s Theorem, this in turn implies that T ` 0 6= 0, showing that such a
theory, if consistent, cannot prove its own consistency.
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