Sound and Efficient Closed-World Reasoning
for Planning

Oren Etzioni Keith Golden Daniel Weld*
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195
{etzioni, kgolden, weld}@cs.washington.edu

April 2, 1996

Abstract

Closed-world inference is the process of determining that a logical sentence is false
based on its absence from a knowledge base, or the inability to derive it. This process
is essential for planning with incomplete information. We describe a novel method for
closed-world inference and update over the first-order theories of action used by planning
algorithms such as NONLIN, TWEAK, and UcPOP. We show the method to be sound
and efficient, but incomplete. In our experiments, closed-world inference consistently
averaged about 2 milliseconds, while updates averaged approximately 1.2 milliseconds.
We incorporated the method into the X1 planner, which supports our Internet Softbot
(software robot). The method cut the number of actions executed by the Softbot by a
factor of one hundred, and resulted in a corresponding speedup to XII.

1 Introduction and Motivation

Classical planners such as NONLIN [47], TWEAK [5], or UCPOP [41, 48] presuppose correct and
complete information about the world. Having complete information facilitates planning, since the
planning agent need not obtain information from the external world — information absent from the
agent’s theory of the world is assumed to be false (this is the infamous closed world assumption [44]).
However, in many cases, an agent has incomplete information about its world. For instance, a robot
may not know the size of a bolt or the location of an essential tool [38]. Similarly, a software agent,

*We thank Paul Beame, Tom Dean, Denise Draper, Marc Friedman, Steve Hanks, Rao Kambhampati, Craig
Knoblock, Neal Lesh, Alon Levy, Martha Pollack, Rich Segal, Yoav Shoham, Mike Wellman, Mike Williamson, and
anonymous referees for helpful comments on earlier drafts of this paper. Omid Madani contributed to the formal
aspects of the paper, and Rob Spiger contributed to the implementation. This research was funded in part by Office
of Naval Research Grants 90-J-1904 and 92-J-1946, by a grant from the University of Washington Royalty Research
Fund, and by National Science Foundation Grants IRI-8957302, IRI-9211045, and IRI-9357772, by ARPA / Rome
Labs grant F30602-95-1-0024, and by a gift from Rockwell International Palo Alto Research. Golden is supported in
part by a UniForum Research Award and by a Microsoft Graduate Fellowship.



such as the Internet Softbot [19, 14, 17], cannot be familiar with the contents of all the bulletin
boards, FTP sites, and files accessible through the Internet.!

What do we mean by incomplete information? In this paper, we focus on incomplete but correct
information about the state of the external world (see Section 2.1 for a formal description). In
contrast to work on relational database theory [26], we do not assume that all objects in the external
world are known in advance; agents constantly encounter new objects. In addition, we do not
assume that the world is static; agents constantly sense (or cause) changes to the world. However,
we do assume that agents are informed about changes to the world, so that their information about
the world remains correct.

Recent work has sketched a number of algorithms for planning with incomplete information
(e-g., [1, 38, 16, 31, 42]). These algorithms make the open world assumption — information
not explicitly represented in the agent’s theory of the world is unknown. Because they make the
open world assumption, none of the above algorithms handle universally quantified goals. The
planners cannot satisfy even a simple goal such as “Print all of Smith’s postscript files in the /kr94
directory” because they have no way to guarantee that they are familiar with all the relevant files.
In addition, these planners are vulnerable to redundant information gathering when they plan to
“sense” information that is already known to the agent [18]. Since satisfying the preconditions of
an information-gathering action can involve arbitrary planning, the cost of redundant information
gathering is unbounded in theory and large in practice [24].

We can still salvage a partial notion of complete information, even in the presence of unknown
facts. Many sensing actions yield local closed world information (LCW). For example, scanning with
a TV camera shows all objects in view, and the UNIX 1s -a command lists all files in a given
directory. After executing 1s -a, it is not enough for the agent to record that the files paper.tex
and proofs.tex are in /kr94 because, in addition, the agent knows that no other files are in that
directory. Note that the agent is not making a closed world assumption. Rather, the agent has
executed an action that yields closed world information.

The agent stores the limited information it has about the external world in a database M, which
we refer to as its “incomplete world theory.” To represent LCW, we utilize an explicit database of
meta-level sentences such as “I know all the files in /kr94.” The sentences describe the limited
instances over which M is in fact a complete theory of the external world. The information in
the LCW database is equivalent to the “closed roles” found in knowledge-representation systems

such as CLASSIC [2] and LOOM [3], to predicate completion axioms [6, 30}, and to circumscription
axioms [36, 35].

1.1 Contributions

While the notion of closed world reasoning appears in previous work, our novel contributions include
the following:

e A sound and incomplete calculus for answering queries based on the LCW database (Section 2).
The calculus answers queries such as: if the agent knows all the files in the directory /kr94,
and knows all group-readable files on the file system, does it follow that the agent knows all
the group-readable files in /kr94?

'Because our work is motivated by the softbot, most of our examples are drawn from the Internet and UNIX

domains. However, we emphasize that our results are general and corresponding examples are easily found in physical
domains as well.



e A sound but incomplete calculus for updating the LCW database as the state of the world
changes (Section 3). The update calculus answers questions such as: if the agent knows the
lengths of all the files in /kr94, and a file is added to /kr94, does the agent still know the
lengths of all files in that directory? What if a file is deleted from /kr94?

o Efficient algorithms, based on the above calculi, for querying and updating a locally complete
database of domain propositions. We experimentally evaluate the performance of our query
and update algorithms in the Softbot domain (Section 4). We show that the algorithms are
fast and that their incompleteness results in missing less than 1 percent of the LCW inferences
requested. Overall, the LCW mechanism speeds up XII by a factor of one hundred, demon-

strating that the trade-off we have struck between completeness and tractability is a good
one.

1.2 Previous Work

Below, we briefly review the large body of related work on circumscription, autoepistemic logic,
and database theory. At the end of this section, we summarize the key differences between this
body of work and ours.

The bulk of previous work has investigated the logic of closed world reasoning (e.g., [29, 12, 45,
37, 32]), and the semantics of theory updates (e.g., [23, 27, 8]). Results include logical axiomati-
zations of the closed world assumption (CWA), exploring the relationship between the CWA and
circumscription, distinguishing between knowledge base revision and knowledge base update, and
more. Although decidable computational procedures have been proposed in some cases (e.g., [22],
and the Minimality Maintenance System [43]), they remain intractable. Update procedures have
been described that involve enumerating the possible logical models corresponding to a database
(e.g-, [49, T]), or computing the disjunction of all possible results of an update [28]. In contrast, we
adopt the WIDTIO (When In Doubt Throw It Out [50]) policy. As [9] points out, this method is
easy to implement efficiently but has the disadvantage that, in the worst case, all knowledge in the
database has to be retracted. We have developed novel rules that enable us to retain closed world
information in the face of updates. We believe our rules satisfy the update postulates specified in
[27] and generalized in (8], but have not attempted a proof. Instead, we prove that our update
scheme has polynomial worst case running time (Section 3) and we demonstrate experimentally
(Section 4) that our update scheme is effective in practice.

Levy [33] has pointed out a close relationship between closed-world reasoning and the problem
of detecting the independence of queries from updates. However, the computational model in
the database literature (Datalog programs) is different from our own. Furthermore, polynomial-
time algorithms for this problem are rare in the database literature (e.g., [34] merely reports on
decidability). Notable exceptions include Elkan’s [10] polynomial time algorithm for conjunctive
query disjointness, and Elkan’s [11] approach for handling monotonic updates.

Recently, some excellent analyses of the computational complexity of closed-world reasoning
have emerged (4, 9], which show that the different approaches described in the literature are highly
intractable in the general case. Stringent assumptions are required to make closed-world reasoning
tractable. For example, Eiter and Gottlob [9, page 264] show that propositional Horn theories
with updates and queries of bounded size yield polynomial-time algorithms. However, all positive
computational tractability results reported in [4, 9] are restricted to propositional theories. Moti-
vated by the need for closed-world reasoning in modern planning algorithms, we have formulated a



rather different special case where the knowledge bases record first-order information, queries are
first-order conjunctions, and updates are atomic.

In short, there are three fundamental differences between the results in this paper and previous
work. First, most previous work has focused on the logic of closed-world reasoning, not on its
computational tractability. Second, we have formulated efficient closed-world reasoning algorithms
for first-order theories of the sort used by modern planners.2 Previous work has only found tractable
algorithms for restricted classes of propositional theories. Finally, we not only show that our
algorithms run in polynomial time (for queries and updates of bounded size), but also carry out a
host of experiments demonstrating them to be efficient in practice (Section 4).

Our own research has its roots in the SOCRATES planner, where the difficulties caused by the open
world assumption were first noted [18]. In addition, SOCRATES supported a restricted representation
of local closed world information, which enabled it to avoid redundant information gathering in
many cases. Provably sound and tractable calculi for LCW inference and update were introduced in
[15]. In this paper, we provide a generalized inference calculus, efficient algorithms for inference
and update, a precise semantics for update, and a detailed analysis of the tractability and power of
our LCW mechanism. In addition, we report on a comprehensive experimental study in the Softbot
domain, which includes close to 400,000 LCW queries.

1.3 Organization

The paper is organized as follows. Section 2 introduces our calculus for answering LCW queries in
a static universe. In Section 3 we present our calculus for updating LCW as the world changes.
Although our approach will never derive an LCW formula that doesn’t hold, it is not guaranteed to
derive all true LCW statements. Section 4 uses empirical techniques to show that this incompleteness
is not problematic in practice, and that our approach is fast.

After concluding with a discussion of future work, we present additional details in two appen-
dices. Appendix A proves that our rules and inference algorithms are sound, and Appendix B
describes the methodology underlying our experiments.

2 Incomplete Information about the World

We’ve argued that when acting in complex, real-world domains such as the Internet, no agent
can have complete information. In this section we present a compact representation for a class
of incomplete theories of the world and describe a set of sound and tractable inference rules for
reasoning about local closed world information. Subsequent sections explain how to keep the
representation consistent as the world changes.

2.1 Semantics

We begin by formalizing the notion of an incomplete world theory. In essence, we adopt the
standard semantics of first-order logic (adding the truth value U for unknown facts). At every point
in time, the world is in a unique state, w, which may be unknown to the agent. For any ground,

2Since we consider formulae with an essentially unbounded number of instances, it is impractical to translate our
first-order theories into propositional correlates. Furthermore, as shown in Sections 2.3 and 3, local closed-world
reasoning makes essential use of first-order constructs such as unification.



atomic sentence ¢, either w |=¢ or w ==y hence the set of ground facts entailed by the world forms
a complete logical theory, which we denote W. Following [39, 20] and many others, we formalize
an agent’s incomplete information with a set of possible world states, ¥, that are consistent with
its information. Since we assume that what information the agent does have is correct, the current
world state, w, is necessarily a member of £. We say that ¢ is known to the agent (written X |= @)

just in case Vs € &, s = ¢. We use S to denote the incomplete theory of ground literals known by
the agent.

S={p | ZFv}

We say that the agent possesses complete information when ¥ and w entail exactly the same
set of facts, i.e. when S = W. Incomplete information means that there are facts, ¢, such that
neither ¥ |= ¢ nor £ | —p; in this case we say ¢ is unknown to the agent. Thus, we say that an

atomic formula, ¢, has truth value T if ¥ |= ¢, has truth value F if ¥ = -, or has truth value U
otherwise.

2.2 Local Closed World Information

We say that an agent has local closed world information (LCW) relative to a logical formula ® if
every ground sentence that unifies with @ is either entailed by ¥ or is necessarily false:3

LCW(®) = (T | 96) V (X |= ~®0) for all ground substitutions 6 (1)

In essence, this definition specifies which parts of the logical theory, S, are complete (cf. [13]
and others). Note that since S is a subset of W, the definition of LCW amounts to a limited
correspondence between ¥ and w. If LCW(®) holds, then all states in ¥ (including w) agree on the
variable assignments satisfying ®. As a concrete example, suppose that parent.dir(f,d) means

“The parent directory of file f is directory d;” then we can encode the fact that an agent knows all
the files in the directory /kr94 with:

LCW(parent.dir(f, /kr94))

If the agent knows that paper.tex and proofs.tex are in /kr94 then this LCW formula is equivalent
to the following implication:

Vf parent.dir(f, /kr94) —
(f = paper.tex) V (f = proofs.tex)

An LCW formula can also be understood in terms of circumscription [35]. For the example
above, one defines the predicate P(z) to be true exactly when parent.dir(z, /kr94) is true, and
circumscribes P in the agent’s theory.

While our work can be understood within the circumscriptive framework, our implemented
agent requires the ability to infer and update? closed world information quickly. We have developed

3We use italics to denote free variables and write & to denote the result of applying the substitution 6 to the
formula &.

“Following [27, 28] we distinguish between updating a database and revising it. We assume that our agent’s
knowledge is correct at any given time point, hence there is no need to revise it. When the world changes, however,
the agent may need to update its theory to remain in agreement with the world.



computationally tractable closed-world reasoning and update methods, applicable to the restricted
representation languages used by modern planning algorithms. The next section describes the
theory underlying LCW inference. Then, in Section 2.4 we explain how to represent LCW knowledge
in a manner that facilitates efficient inference. Section 2.5 develops and analyzes an algorithm for
LCW inference using these syntactic structures.

2.3 Laws of Local Closed World Information

Correctly answering LCW queries is not a simple matter of looking up assertions in a database.
For instance, suppose the agent wants to establish whether it knows which files are in the /kr94

directory, and it finds that it has LCW on the contents of every directory. Then, a fortiori, it knows
which files are in /kr94. That is:

LCW(parent.dir(f,d)) |= LCW(parent.dix(f, /kr94))

In general, we have:

Theorem 1 (Instantiation) If® is a logical formula and 6 is a substitution, then LCW(®)=LCW($4).°

Moreover, LCW assertions can be combined to yield new ones. For example, if one knows all the
group-readable files, and for each group-readable file, one knows whether that file is in /kr94, then
one knows the set of group-readable files in /kr94. In general, if we know the contents of set A,
and for each member of A, we know whether that member resides in another set B, then we know
the intersection of sets A and B. More formally:

Theorem 2 (Composition) If ® and ¥ are logical formulae and LCW(®) and for all substitutions
o, we have that ¥ |= ®o implies LCW(V o), then we can conclude LCW(® A T).

Note that if the agent knows all the group-readable files, and it knows which files are located
in /kr94, it follows that it knows the set of group-readable files in /kr94. This is a special case of
the Law of Composition, in which LCW(¥) holds for all o, but it’s interesting in it’s own right. In
general, we have:

Corollary 3 (Conjunction) If ® and ¥ are logical formulae then LCW(®) ALCW(¥) = LCW(Q A YY)

The intuition behind this corollary is simple — if one knows the contents of two sets then one
knows their intersection. Note that the converse is invalid. If one knows the group-readable files in
/kr94, it does not follow that one knows all group-readable files. The rule LCW(®) = LCW(® A )
is also invalid. For instance, if one knows all the group-readable files, it does not follow that one
knows exactly which of these files reside in /kr94.

Two additional observations regarding LCW are worth noting. If one knows the contents of two
sets then one knows their union. More formally:

5Proofs of the theorems are sequestered in Appendix A.



Theorem 4 (Disjunction) If ® and ¥ are logical formulae then LCW(®) ALCW(V) = LCW(® V ¥)

Finally, knowing whether an element is in a set is equivalent to knowing whether an element is
not in the set:

Theorem 5 (Negation) If @ is a logical formula then LCW(®)|= LCW(—®).

As we explain in the next section, our representation of LCW sentences is restricted to posi-

tive conjunctions. As a result, the observations regarding disjunction and negation are of purely
theoretical interest.

2.4 Representing Closed World Information

In this section, we explain how our agent represents its incomplete information about the world, and
how it represents LCW in this context. Clearly an agent cannot represent ¥ (a potentially infinite
set of large structures) explicitly. Nor can one represent S explicitly, since this theory contains an
infinite number of sentences.

Instead we represent the facts known by the agent with a partial database, M, of ground
literals. Formally, M is a subset of S; if ¢ € M then ¥ = ¢. Since S is incomplete, the Closed
World Assumption (CWA) cannot be applied to M. The agent cannot automatically infer that
any atomic formula absent from M is false. Thus, the agent is forced to represent false facts in M,
explicitly, as sentences tagged with the truth value F.

This observation leads to a minor paradox: the agent cannot explicitly represent in M every
sentence it knows to be false (there is an infinite number of files not in the directory /kr94). Yet
the agent cannot make the CWA. We adopt a simple solution: we represent local closed world
information explicitly as a meta-level database, £, containing localized closure axioms of the form
LCW(®); these record where the agent has closed world information. Together, the M and L
databases specify an agent’s state of incomplete information about the world (i.e., they constitute
a partial representation of S).

When asked whether it believes an atomic sentence ¢, the agent first checks to see if ¢ is in
M. If it is, then the agent responds with the truth value (T or F) associated with the sentence.
However, if ¢ ¢ M then ¢ could be either F or unknown (truth value U). To resolve this ambiguity,
the agent checks whether £ entails LCW(yp). If so, the fact is F; otherwise it is U. Figure 1 formalizes
this intuitive procedure by providing pseudo code for the Query algorithm.

Note that the agent need not perform inference on M since it contains only ground literals, but
it may need to perform some deduction on its LCW sentences. To make LCW inference and update
tractable, we restrict the formulae in £ to conjunctions of positive literals. As a result, we lose
the ability to represent LCW statements that contain negation or disjunction such as “I know the
protection of all files in /kr94 ezcept the files with a .dvi extension.” Thus, for any consistent M,
L pair, there exists an S that entails the same set of LCW sentences, but the converse is false. On
the other hand, for any theory S, there exists (at least one) pair of databases M, £ which represent
a strict subset of the sentences in §. We call such a M, £ pair a conservative representation of S.

Restricting the expressiveness of £ provides significant efficiency gains. To see this, consider a
singleton LCW query such as LCW(parent.dir(f, /kr94)). If £ contains only positive conjunctions,
the query can be answered in by examining only singleton LCW assertions indexed under the predicate



function Query(®, M, £): 3-Boolean
1 let Result :=T
let LCW := QueryLCW(®, M, L)
for each atomic conjunct ¢ € ® do begin
if -y € M then return F
else if ¢ € M then
if LCW then return F
else let Result :=U
end(* for *)
return Result

© 00 IO U W

Figure 1: Query, a fast algorithm for determining the agent’s belief in a ground conjunction. Query
returns the truth value of ®, if & can be deduced from M. Otherwise it returns either F, if
QueryLCW(®) succeeds, or U if QueryLCW fails (QueryLCW is defined in Figure 2).

parent.dir. If negation is allowed, however, then a combination of multiple LCW sentences has to be
explored. For instance, LCW(® A ¥)ALCW(® A -¥)=LCW(®). Introducing disjunctive LCW sentences
into £ would make matters even worse. In general, answering a singleton LCW query, in the presence
of negation and disjunction, is NP-hard.

Theorem 6 (NP-hardness of LCW queries for unrestricted £) If £ contains unrestricted LCW

formulae, including disjunction and negation, and p is a single literal, then answering a query LCW(p)
18 NP-hard.

Since our planner makes numerous singleton queries, we chose to sacrifice completeness in the
interest of speed and restrict £ to positive conjunctions.

2.5 Inference Method

We have discussed the semantics of LCW entailment in terms of & and S, but since the agent has
access only to the syntactic representations £ and M, we must describe inference in terms of these
databases. As it turns out, the actual inference procedure directly corresponds to the laws of
Instantiation and Composition described in Theorems 1 and 2. We can define the transitive closure
of £ using the following two rules.

1. Instantiation Rule If LCW(®) € £ and 6 is a substitution, then £':=L U {LCW($6)}.

2. Composition Rule If LCW(®) € £ and for all ground substitutions 8 (6 € M = LCW(T0) €
L) then £:=L U {LCW(® A T)}

Given the direct correspondence between these two rules and Theorems 1 and 2, this inference
process (denoted |) is clearly sound. Unfortunately, however, the inference rules are incomplete.

Theorem 7 (Incompleteness) Let M be a set of consistent ground literals and let L be a set
of positive conjunctive LCW formulae. There may ezist an LCW formula LCW(®) that logically fol-

lows from £ and M, but which is not in the transitive closure of £ given the Instantiation and
Composition rules.



function QueryLCW(®, M, £): Boolean
1 QLCWX(®, {}, M, £)
function QLCW*(®, Matches, M, L): Boolean

1 if = {} then return T
2 else if ® is ground and 3p € ,~p e MorVyp € &,p € M
then return T
else for C such that LCW(C) € L do
for ' C (® U Matches) such that 39,3’ = C0 do
if ® — Matches # {} then
if Vo € ConjMatch(Matches U &', M)
QLCW*((® — ®')o, (Matches U ®')a, M, L)
then return T

S O W

return F

Figure 2: The QueryLCW algorithm determines whether a conjunctive LCW statement follows from
the agent’s beliefs as encoded in terms of the M and £ databases. Since £ is restricted to positive
conjunctions, LCW inference is reduced to the problem of matching a conjunctive LCW query against
a database of conjunctive LCW assertions. A successful match occurs when repeated applications
of the Composition Rule (line 6) decompose the query into sub-conjunctions, which are directly
satisfied by the Instantiation Rule applied to £ (line 4) or reduced to ground formulae and found
in M (line 2). Note that unlike Query, the QueryLCW algorithm allows variables in its ® input.
QueryLCW calls the QLCW™* helper function which calls ConjMatch in turn. ConjMatch(C, M)
performs a standard conjunctive match, returning all bindings 8, such that M = C#6. The variable
Matches represents all conjuncts of the original query that have so far been matched by some
LCW formula. The query is satisfied when all conjuncts have been matched. Matching against a
conjunct multiple times is permitted, which is why ® C (® U Matches) in line 4. Line 5 guarantees

that progress is made in each recursive invocation, so the depth of the recursion is bounded by the
number of conjuncts in .

Fortunately, the incompleteness of these inference rules is not a problem in practice. Section 4.2
provides an empirical demonstration that they miss substantially less than 1% of the LCW inferences
requested during Softbot operation.

Note, however, that maintaining an explicit transitive closure of £ is impractical. For each
LCW formula in £ the Instantiation Rule alone generates a number of new LCW formulae that is
polynomial in the number of objects in the universe. Given finite memory resources, we choose
instead to compute the closure lazily, by performing the necessary inference during queries. Figure 2
shows the inference algorithm. Since the correctness of this backward chaining algorithm is less

obvious than that of the inference rules used to define the transitive closure, we prove soundness
formally.

Theorem 8 (Soundness) Let M be a set of consistent ground literals and let £ be a set of
positive, conjunctive LCW formulae such that M and L form a conservative representation of S. If
QueryLCW(®, M, L) returns T then LCW(D).



In the worst case, QueryLCW has to consider all possible decompositions, which is exponential
in the number of conjuncts in the query.

Theorem 9 (Complexity of QueryLCW) Let ® be a positive conjunction with ¢ conjuncts, let M
be a set of ground literals, and let L be a set of positive conjunctive LCW sentences. In the worst
case, QueryLCW(®, M, L) may require O((| L]+ | M) time.

Fortunately, for our purposes, the number conjuncts in an LCW query is bounded by the planning
domain theory used by the agent. In the UNIX and Internet domains [17], for example LCW queries
are typically short (¢ < 2) and never greater than 4. As a result, the worst case complexity is poly-
nomial in the size of £ and M. With the aid of standard indexing techniques, this yields extremely

fast LCW inference in practice. In our experiments, LCW queries averaged about 2 milliseconds (see
Section 4 for the details).

3 Updating Closed World Information

As the agent is informed of the changes to the external world — through its own actions or through
the actions of other agents — it can gain and lose information about the world. For example, after
executing the UNIX command finger weld@june, the agent should update M with the newly
observed truth value for active.on(weld, june). Similarly, an agent’s actions can cause it to
gain or lose LCW. When a file is compressed, for example, the agent loses information about its
size; when all postscript files are deleted from a directory, the agent gains the information that the
directory contains no such files.

This section presents a sound and efficient method for updating L, the agent’s store of LCW
sentences. In Section 3.1, we start by defining the class of updates handled in terms of atomic
components. The next four subsections (3.2-3.4) present policies for handling the four different
types of atomic updates (see Table 1 for a summary). Section 3.5 provides an example illustrating
the update mechanism. Then, in Section 3.6, we show that the updates can be performed in poly-
nomial time. The final two sections discuss the optimality of our policies: Section 3.7 demonstrates
that no valid LCW sentences are discarded by the atomic update policies, and Section 3.8 presents
an optimal order for handling the atomic components of a complex update.

3.1 Representation of Change

We are motivated by the representation of dynamic change explored by planning researchers, e.g.
ADL [40], UWL [16], and especially the action description language used by the planner guiding the
Internet Softbot {17, 24, 25], which combines ideas from ADL and UWL. We assume that changes
can be decomposed into a set of atomic updates, each concerning the truth value of a set of literals
matching a pattern. For example, suppose that initially the agent doesn’t know whether weld is
active on the machine called june, so it executes a UNIX finger action which observes that weld
is active. We can describe the resulting change in the agent’s information with a single atomic
update: A(active.on(weld, june),U— T).

Below, we define this A notation formally, but before delving into the technical details note
that the description of more complex changes may require multiple atomic components. For exam-
ple, consider the UNIX action mv /papers/kr94.tex /archive/kr94.tex which has the effect of
moving a file from one directory to another. The change due to the execution of this action can’t

10



be represented as a single update by our definitions, but it can be expressed as the following set of
atomic updates:

* A(parent.dir(kr94.tex, /papers),T — F)
e A(parent.dir(kr94.tex, /archive),F — T)

* A(parent.dir(kr94.tex, /archive),U — T)

The last two atomic components capture the fact that regardless of whether the agent knew
whether a file named kr94.tex was present in /archive before the mv, the agent knows that such a
file is present afterward. Informally, A(parent.dir(kr94.tex, /archive) ,F — T) should be read
as “If the agent knew (before the mv) that no file named kr94.tex was in / archive, then the agent
now knows (after the mv) that there is such a file in /archive.”

We assume that the atomic updates corresponding to a compound change are consistent, i.e.
at most one atomic update changes the truth value of any single ground formula. Given this
assumption, our update policy is free to process the atomic components in any order.® Furthermore,
we assume that these atomic updates constitute a complete list of changes in the world, thus
sidestepping the ramification problem [23].” In the example above, each of the three atomic updates
changed the truth value of at most one ground literal, but in general an atomic update need not be
ground; in other words, a single atomic update can affect the truth value of an unbounded number
of ground literals. For example, suppose that size(paper.tex, 14713) € S before the agent executes
the UNIX command compress paper.tex. In this case, numerous literals change their truth value
when the size of paper.tex becomes unknown: size(paper.tex, 14713) changes from T to U,
while size (paper.tex, 14712) (and an unbounded number of similar literals) change from F to U.
In this case, we summarize the change with the following pair of updates, the last of which affects
the truth value of an infinite number of ground literals:

o A(size(paper.tex, z),T — U)

e A(size(paper.tex, z),F — U)

So far our discussion of atomic updates has been informal, but we now make the notion precise.®
We model a change from an agent’s incomplete theory, S, to a new theory, S, as follows. Let ®
be a positive literal possibly containing free variables, for example p=size (paper.tex, z). We
define the sets 7(yp, S), F(p, §), and U(p, S) as the ground instances of ¢ that are true, false or
unknown, respectively:

Up,S) = {Yly=pd Ay gSA—y ¢S}
T(p,8) = {Yld =909 € S}

Flp,S) = {Ylp =9 A~ eS8}
TF(p,S) = T(p,S)UF(p,S)

6Section 3.8 explains how transformations exploiting this commutativity can lead to improved performance.

"This is standard in the planning literature. For example, a STRIPS operator that moves block A from B to € must
delete on(A, B) and also add clear(B) even though clear(B) can be defined as Vy —on(y,B).

®Readers satisfied with this informal explanation may wish to skip to Section 3.2.

11



Note that for any value of z, size(paper.tex, z) will be in exactly one of the three sets.
Finally, A(p,F — U) means that all elements of F(p, S) become elements of U(¢p, S').

To define A precisely, we need one more notational device. For convenience in representing
those literals that remain unchanged from S to S’, we define the operator © which, given a theory

S and a set of positive, ground literals NV, returns S with all positive and negated members of N
removed:

SON ={YlYy e SAYEN A~ ¢ N} (2)

To understand the intuition behind ©, consider the previous example in which p=size(paper.tex,
z). T(p,S) = {size(paper.tex, 14713)}, so SO©T (i, S) is equivalent to S with the information
size(paper.tex, 14713) removed. So §'67(p,S) = S6T (p,S) is simply a concise way of saying
that the only change from S to S’ concerns the belief that paper.tex has the size 14713. Neither
the belief that paper.tex is in directory /papers, nor the belief that paper.tex doesn’t have size

14712 has changed. In other words, S'©7 (¢, S) = S6T (¢, S) is a frame axiom stating that nothing
has changed aside from the truth value of literals contained in T(¢,S).
The formal definition of A(p, T — F) appears below.

A(p,T—F) T (o, Sl) =0 A
.7:((p,8,) =F(p,S) UT(‘F’S) A
S'eT(p,S) = S6T(p,S) (3)

Definitions for most other truth values are similar, but one bears discussion: A(p,U— (TVF)).
There is no need to specify the change from a disjunction of truth values because such a change can
be decomposed into a pair of simpler updates. Specifically, there is no need to define A(p,(TVF) - V)
because it would be equivalent to the set containing both A(p, T — U) and A(yp,F — U). However,
some useful changes can not be modeled without using a disjunction on the right hand side of
the arrow. For example, the UNIX 1s -a command observes the name of all files in a direc-
tory argument; when applied to the /tex directory, the command induces the following update:
A(parent.dir(o,/tex),U — (T V F)) because some files are observed to be present while all others
are now known to be absent. We define the update formally as follows:

A(p,U— (TVF) = Up,8)={}A
T(p,8") CT(p,8) A
F(p,8") € F(p,8) A
TF(p,8") = TF(p,S) UlU(p,S) A
S'oU(p,8) = Sel(yp,S) (4)

In subsequent sections we describe a process for handling these updates. Specifically, we assume
that the agent starts with a M, £ pair that forms a conservative representation of an incomplete
theory S. When informed of a change, i.e. a set of atomic updates described using the A notation
defined above, the agent must create a new M’ and £, ensuring that these databases are still
conservative representations, yet retain as much information as possible. We present our method

12



for processing updates as a set of rules and state them as theorems since they are sound: i.e., they
preserve conservative representations.

By distinguishing between transitions to and from U truth values, £ updates can be divided into
four mutually exclusive and exhaustive cases which we call Information Gain, Information Loss,
Domain Growth, and Domain Contraction. In the next four sections, we consider each case in turn.

3.2 Information Gain

An agent gains information when it executes an information-gathering action (e.g., UNIX wc or 1s),
or when a change to the world results in information gain. In general, if an agent gains information,
it cannot lose LCW, and will gain LCW in some cases as explained below.

Theorem 10 (Information Gain Rule) Let L be part of a conservative representation. If an

atomic change is of the form A(p,U — (T VF)), then L':=L U {LCW(p)} yields a conservative rep-
resentation.

The Information Gain Rule is obviously true when ¢ is ground, in which case this LCW update
would be vacuous. However, the rule can also apply when ¢ contains free variables. For example,
execution of the UNIX command 1s -a /tex produces a A(parent.dir(f,/tex),U— (T VF))
update, where f is a free variable. As a result, the Information Gain Rule concludes that the agent
now knows all files in the /tex directory: LCW(parent.dir(f, /tex).

If the unique value of a function is determined, such as the word count of a file, then a ground
update can lead to LCW of a lifted sentence. For example, if an agent discovers that foo.tex has
length 5512 then it knows that the length is neither 5513 nor any other value. In other words, the
agent knows LCW(word.count (foo.tex, z)).

In order to make this precise, we define the cardinality of a (lifted) literal, ¢, in a set of sentences
(e.g., M or W) to be the number of ground literals in the set that unify with ¢.

Cardinality(p, M) = | {¢ € M such that ¢ is ground and I8¢ = 6}

When an update causes the cardinality of ¢ to be the same in M as it is in W, we can conclude
that we have LCW(¢p):

Theorem 11 (Counting Rule (after [46])) Let M, L be a conservative representation and let
6 be a substitution. If an atomic change of the form A(p8,U — T) causes Cardinality(p, M') =
Cardinality(p, W) then L' :=L U {LCW(p)} yields a conservative representation.

To utilize the Counting Rule in practice, our agent relies on a set of explicit axioms that define
the cardinality of predicates in WW. For example, we tell our agent that word.count is functional
in its first argument as is file.size etc..
In some cases the Information Gain and Counting Rules, used in conjunction with the Compo-
sition Rule, can lead to additional forms of local closed world information. For example, the UNIX
command 1s -la /tex detects the size of all files in the /tex directory. The A(parent.dir(f, /tex),U — (TVF,
update allows the Information Gain Rule to conclude LCW(parent.dir(f, /tex)) as explained
above. Suppose that there are two files in the directory, foo.tex and bar.tex, which are 55
and 66 bytes long respectively. The following two updates A(size(foo.tex, 55),U — T) and

13



A(size(bar.tex, 66),U — T) will yield LCW(size(foo.tex, [)) and LCW(size(bar.tex, [)) via
the Counting Rule. The Composition Rule can now be used to conclude

LCW(parent.dir(f,bin) A size(f,1))

Cases like this (i.e., where LCW results from the execution of an action) are so common that we
apply the Composition Rule proactively. In other words we add the LCW statement above at the
time that the A updates are received rather than waiting for an LCW query. The details of this
optimization are difficult to explain without a full description of the planner’s action language [24,
25], but it is important to note that the policy does not add LCW sentences of arbitrary length to

L. For example, in the UNIX domain tested in Section 4, all LCW sentences added to £ had fewer
than 3 conjuncts.

3.3 Information Loss

An agent loses information when a literal, previously known to be true (or false), is asserted to
be unknown. When a UNIX file is compressed, for example, information about its size is lost. In
general, when information is lost about some literal, all LCW statements “relevant” to that literal

are lost. To make our notion of relevance precise, we begin by defining the set PREL(y) to denote
the LCW assertions potentially relevant to a positive literal ¢:°

PREL(p) = {® € L 3z € $,30,3a,26 = pa}

For example, if an agent has complete information on the size of all files in /kr94, and a file
lcw.tex in /kr94 is compressed (¢ = size(lcw.tex,n)), then the sentence

LCW(parent.dir(f, /kr94) A size(f,c)) (5)

is in PREL(y) and should be removed from £. Unfortunately, when a file in the directory /bin
is compressed, the above LCW sentence is still in PREL(yp) (z = size(f,c)) even though the agent
retains complete information about the files in /kr94. Clearly, LCW sentence 5 ought to remain in
L in this case. To achieve this behavior, we check whether the agent has information indicating
that the LCW sentence does not “match” the compressed file. If so, the LCW sentence remains in L.
In general, we define the set of LCW assertions relevant to a positive literal ¢ to be the following
subset of PREL(yp):

REL(p) = {® € PREL(p) LAM I ~(® — z)8}

where, from the definition of PREL(y), 3z € ®,30,3a, such that 26 = pa. If 0 is not a complete
mapping, then to exclude ® from REL(y), it is necessary that all possible ground instances of
(® — z)0 are known to be false, or equivalently, that LCW((® — z)#), and so there is no match to
(® — )0 in M. We can now state our update policy for Information Loss:

Theorem 12 (Information Loss Rule) Let L be part of a conservative representation. If an

atomic change is either of the form A(p,T — U) or A(p,F — U), then L' :=L — REL(p) yields a
conservalive representation.

®Since the sentences in £ are conjunctions of positive literals, we use the notation ¢ € & to signify that ¢ is one
of ®’s conjuncts, and the notation ® — ¢ to denote the conjunction ® with ¢ omitted.

14



Note that compressing a file foo in /bin does not remove LCW sentence 5. To see this, let
z = size(f,c), 6 = (foo/f), and ¢; = parent.dir(f, /kr94). Since foo is known to be in /bin (and
parent.dir is a functional relation), from £A M one can prove that —¢;0. Hence, (CAM I —¢;0)
is false and @ is not included in REL(yp). Note also that, given our assumptions (correct information,
etc.), information is only lost when the world’s state changes.

3.4 Changes in Domain

Finally, we have the most subtle cases: an agent’s theory changes without strictly losing or gaining
information. For example, when the file ai . sty is moved from the /tex directory to / kr94, we have
that the updated M’ # M but neither database is a superset of the other. When the theory changes
in this way, the domain of sentences containing parent.dir(f, /kr94) grows whereas the domain
of sentences containing parent.dir(f,/tex) contracts. LCW information may be lost in sentences
whose domain grew. Suppose that, prior to the file move, the agent knows the word counts of all
the files in /kr94; if it does not know the word count of ai.sty, then that LCW assertion is no
longer true. As with Information Loss, we could update £ by removing the set REL(y). However,
this policy is overly conservative. Suppose, in the file move described above, that the agent does
know the word count of ai.sty. In this case, it retains complete information over the word counts
of the files in /kr94, even after ai.sty is moved.

More generally, when the domain of an LCW sentence grows, but the agent has LCW on the new
element of the domain, the LCW sentence can be retained. To make this intuition precise, we define
the following “minimal” subset of REL(¢p):

MREL(p) = {® € REL(p) M A L i LCW((® — z)6)}

where, from definition of PREL(p), 3z € ®,36,3q, such that 20 = pa. We can now state our
update policy for Domain Growth:

Theorem 13 (Domain Growth Rule) Let £ be part of a conservative representation. If an

atomic change is of the form A(p,F — T), then L':=L — MREL(¢p) yields a conservative representa-
tion.

When the domain of a sentence contracts, no LCW information is lost. For instance, when a file
is removed from the directory /kr94, we will still know the size of each file in that directory.

Theorem 14 (Domain Contraction Rule) Let £ be part of a conservative representation. If
an atomic change is of the form A(p,T — F), then L':=L yields a conservative representation.

The rules guarantee that £ does not contain invalid LCW assertions, so long as the agent is
apprised of any changes to the world state. However, for the sake of tractability, the rules are
conservative — L' may be incomplete. For example, if ai.sty is moved into /kr94 as in the earlier
example, but the word count of ai.sty is unknown, we might wish to say that we know the word
counts of all the files in /kr94 ezcept ai.sty. However, we refrain from storing negated sentences
in £ because such sentences would slow down LCW inference, as shown in Section 2.4.

15



| A(p, =) [ Update Rule |- L | UNIX Examples |

U — (FVT) | Information gain L':=CULCW(p) | 1s, wc
(FVT) — U | Information loss L':=L —REL(p) | compress
T—F Domain contraction | £' = L m

F—-T Domain growth L':=L — MREL(p) | cp

Table 1: A summary of the mutually exclusive and exhaustive atomic update rules for the LCW

database £. All update rules except Domain Contraction have the potential to introduce incom-
pleteness into L.

3.5 Example

Table 1 provides a capsule summary of our LCW update rules discussed in the previous four sections.
Below, we provide an extended example of the update machinery in action. Specifically, we illustrate
how the update rules affect £ as the following command sequence is executed:

1ls -al /kr94

ls -al /papers

mv /kr94/kr.ps /papers
compress /papers/kr.ps

Initially, both the databases representing ground formulae (M) and LCW formulae (£) are empty.
The execution of 1s -al in the directory /kr94 reveals the files in the directory and their size in
bytes. For brevity, we will ignore other effects. Suppose that the files are kr.tex and kr.ps, and
their sizes are 100 and 300 respectively. In this case, M is updated as follows:

M = {parent.dir(kr.tex, /kr94),
size(kr.tex, 100),
parent.dir(kr.ps, /kr94),
size(kr.ps, 300)}

The agent knows the contents of /kr94, and the sizes of all the files therein. In addition, because
the parent directory and size of each file are unique, the Counting Rule implies that the agent has

LCW on the size and parent directory of each file. This information is recorded in the LCW database
as follows:

L = {LCW(parent.dir(f, /kr94)),
LCW(parent.dir(f, /kr94) A size(f, )
LCW(parent .dir(kr.tex, d)),
LCW(size(kr.tex, [)),

LCW(parent .dir(kr.ps, d)),
LCW(size(kr.ps, {))}

16



The directory /papers is initially empty. Thus, after executing 1s -al in the directory / papers,
the agent records LCW information for the directory /papers, but no updates are made to M.

L = {LCW(parent.dir(f, /kr94)),
LCW(parent .dir(f, /kr94) A size({, 1)),
LCW(parent .dir(kr.tex, d)),
LCW(size(kr.tex, [)),
LCW(parent.dir(kr.ps, d)),
LCW(size(kr.ps, l)),
LCW(parent .dir(f, /papers)),
LCW(parent.dir(f, /papers) A size(f, 1))}

Moving the file kr . ps from the directory /kr94 to the directory /papers results in both Domain

Contraction to the directory /kr94, and Domain Growth to the directory /papers. Mis updates
as follows:

M = {parent.dir(kr.tex, /papers).
size(kr.tex, 100),
parent.dir(kr.ps, /kr94),
size(kr.ps, 300)}

There is no change to £ due to Domain Contraction. However, Domain Growth could poten-
tially result in statements being retracted from £. This example illustrates the advantage of having
the Domain Growth Rule retract the set of MREL sentences from £, rather than naively retracting
the set of REL sentences. There are three statements in REL:

REL(parent.dir(kr.ps, /papers)) = {LCW(parent.dir(f, /papers)),
LCW(parent .dir(kr.ps, d)),
LCW(parent.dir(f, /papers) A size(f, 1))}

However, the MREL of the update is empty, due to the fact that we have LCW on the size of kr .ps

MREL(parent.dir(kr.ps, /papers)) = {}

As a result, £ remains unchanged after the mv command is executed. However, if we did not

know the size of kr.ps when it was moved, we would have lost LCW on the size of the files in the
directory /papers.

The last action in our example is compressing the file kr.ps. This action illustrates the ad-
vantage of retracting REL rather than PREL in the Information Loss Rule. After the file kr.ps is
compressed, its size becomes unknown. Thus, M shrinks to:

17



{parent.dir(kr.tex, /papers).
size(kr.tex, 100),
parent.dir(kr.ps, /kr94)}

The set of PREL statements is:

PREL(size(kr.ps, l)) = {LCW(parent.dir(f, /kr94) A size(J, 1)),
LCW(parent.dir(f, /papers) A size(f, )),
LCW(size(kr.ps, I))}

In contrast, because we know that kr.ps is now in the directory /papers, the set of REL state-
ments contains only the following:

REL(size(kr.ps, I)) = {LCW(parent.dir(f, /papers) A size(f, D),
LCW(size(kr.ps, I))}

Thus after the compress action is executed, we remove the REL statement from L, obtaining:

L = {LCW(parent.dir(f, /kr94)),
LCW(parent.dir(f, /kr94) A size(f, 1)),
LCW(parent .dir(kr.tex, d)),
LCW(size(kr.tex, l)),
LCW(parent.dir(kr.ps, d)),
LCW(parent.dir(f, /papers))}

3.6 Computational Complexity of Updates

As stated earlier, our motivation for formulating conservative update rules has been to keep LCW

update tractable. We make good on this promise below by considering the complexity of applying
each update rule.

¢ Information Gain: The Information Gain Rule implies that no sentences have to be re-
tracted from L. LCW sentences may be added by the Information Gain Rule in time that is
independent of the size of L. The Counting Rule requires counting ground instances of a
literal in M, which requires time that is at most linear in the size of the database. For the
most part, the Composition Rule is applied only in response to LCW queries; when applied
proactively after action execution, it requires time that is linear in the number of atomic A
updates, which correspond to the action’s effects.

18



e Information Loss: First, the agent computes the set PREL(yp), which takes time linear in the
size of £ in the worst case. Next, the agent computes REL(y) from PREL(yp). Since this means
determining whether LA M F =(® — )0, the agent can incur an O((| £| +| M |)¢) cost for an
LCW query (where ¢ denotes the maximum number of conjuncts in a sentence in £) for each
element in PREL (Theorem 9). Thus, to determine the worst case complexity of Information
Loss, one must calculate the maximum length of the elements of £. This is easy because
there are only two ways that LCW sentences can be added to £: via the Information Gain
Rule or via proactive use of the Composition Rule. Since the first method only adds literals,
¢ = 1. While the Composition Rule could (in theory) lead to an LCW sentence of arbitrary
length, it is only used for forward chaining in a limited context (as explained in Section 3.2).
As a result, it never adds sentences that are longer than a constant bound determined by
the planning-domain. For the UNIX and Internet domains, this constant is 3. In summary,
|PREL(¢) | is potentially linear in the size of £, so computing REL(y) from PREL(¢) could take
o(| (| £] + | M])€). This cost dominates the time for the entire update.

¢ Domain Growth: The agent has to compute the set REL(p) which, as explained above, is
polynomial in the size of £ and M. Computing MREL(¢) from REL(yp) is linear in the size
of REL, but polynomial in the size of £ and M, since additional bounded-length LCW queries
may be involved. The agent then removes each element of the set from £, which takes time
linear in the size of the set MREL(yp). Thus the whole operation is O(] L|(| £| + | M |)®).

e Domain Contraction: £ remains unchanged in this case

We summarize the preceding discussion with the following theorem. The use of standard in-
dexing techniques (e.g., hashing on the predicates in ¢) renders the effective polynomial coefficient
somewhat lower than the conservative bound we present.

Theorem 15 (Tractability of Updates) Let M be a set of ground literals, and let L be a set of
positive conjunctive LCW sentences such that no member of L has more than ¢ conjuncts. Updating
L' in response to an atomic change requires time that is at most O(| L|(| L] + | M])°).

3.7 Optimality of Atomic Update Policies

Since sentences in L are restricted to positive conjunctions, and since our update rules are conser-
vative, the update process is incomplete. Nevertheless, it is easy to see that our algorithm is better
than the trivial update algorithm (£':={}). In our softbot’s domain, for example, the Information
Gain and Counting Rules enable us to derive LCW from a wide range of “sensory” actions, including
pwd, wc, grep, ls, finger, and many more. Furthermore, our update rules retain LCW in many
cases. For example, changes to the state of one “locale” (such as a directory, a database, an archive,
etc.) do not impact LCW on other locales. This feature of our update calculus applies to physical
locales as well.

Below, we make a much stronger claim, that the sets of sentences retracted by theorems 12
through 14 are, in fact, minimal. Every sentence retracted is invalid and must be removed from £
to maintain soundness. This statement is trivially true for Domain Contraction where no sentences
are retracted. Clearly, we cannot do better than that. The following theorem asserts that each LCW
sentence retracted due to Information Loss is, in fact, invalid.

19



Theorem 16 (Minimal Information Loss) Let M, L be a conservative representation, and let
@ be a positive literal. Let A denote an atomic change of the form A(p,T — U) or of the form
A(p,F — U). If & € REL(yp) then LCW(®) does not hold after A has occurred.

Remarkably, the corresponding result holds for Domain Growth.

Theorem 17 (Minimal Domain Growth) Let M, L be a conservative representation, and let

¢ be a positive literal. Let A denote an atomic change of the form A(p,F — T). If ® € MREL(p)
then LCW(® ) does not hold after A has occurred.

Are the update rules for Information Loss and Domain Growth the best possible? At first blush,
the answer to this question would seem to be yes, since the rules are sound and they retract the
minimal set of sentences from £. So what more could we want? However, this observation overlooks
the key fact that inference in our framework is lazy, so that when the sentence @ is retracted we
effectively also retract po for any variable substitution o. Above, we claimed that the sentence ")
really ought to be retracted, but we didn’t claim that the sentence po (which is weaker!) is invalid.
In fact, there are cases where such sentences are valid. For example, consider the case where we
have LCW on the size of all the files in the directory /bin, but the file a.out in that directory is
compressed. Our update rule for Information Loss would retract the LCW statement, when, in fact,
a weaker statement that we know the size of all the files in /bin — except a.out — is true. Since

the sentences in £ are conjunctions of positive literals, we have no way of expressing the above
statement.

3.8 Optimal Order of Atomic Updates

So far our discussion has been restricted to atomic updates, but many updates consist of a set of
such atoms. While the order in which these atomic components are handled does not affect eventual
contents of M, this is not true for £. Of course the M, £ pair will be a conservative representation
of § regardless of the order chosen, but some orderings will discard more sentences from £ than
others. For example, consider the following imaginary UNIX command gen-file < dir > which
creates a new, uniquely named file in directory < dir >, gives it zero size, and returns the name.
The effects of executing gen-file /tex and having it return the name G003 are as follows:

A(parent.dir(G003, /tex),F — T)
A(size (G003, 0),U — T)

Now, suppose that before executing gen-file /tex the agent knew the names and lengths of
all files in /tex.

LCW(parent.dir(f, /tex) A size(f,c))

If the atomic updates are processed in the order given, then the Domain Growth Rule will
eliminate this LCW sentence from £, but if the updates are processed in the reverse order then that
retraction is unnecessary.

To obtain an optimal order, an agent must be sure that as many sentences are added to £ as
possible and that as few are removed as possible. We believe the following order suffices:

20



1. Process Domain Contraction updates.
2. Process Information Gain updates and apply the Counting Rule.
3. Process Domain Growth updates.

4. Process Information Loss updates.

The insight behind this order is as follows. The only type of updates that remove items from £
are Domain Growth and Information Loss which remove the sets MREL(y) and REL(¢p) respectively.
More information present in M, £ means that we’ll have more LCW information and be able to
prove more sentences are false. This in turn means that the REL and MREL sets will be as small as
possible. So Information Gain and Domain Contraction updates should be processed first.!0 It can
be useful to process Domain Contraction Updates before Information Gain because this improves
the chance that the proactive application of the Composition Rule (Section 3.2) will result in new
LCW sentences.

Ultimately, the test of any mechanism for closed-world reasoning — conservative or not — is its
impact on the agent’s performance. In the next section we describe preliminary experiments that
suggest ours is extremely effective in practice, dramatically improving the Softbot’s performance.

4 Experimental Results

In the previous sections we argued that our LCW mechanism is computationally tractable, but
incomplete. However, asymptotic analysis is not always a good predictor of real performance, and
incompleteness is a matter of degree. To evaluate our LCW machinery empirically, we incorporated
LCW into the X11 planner [24] and measured its impact on the performance of the Internet Softbot 7).
In this section, we address the following questions experimentally:

Speed: What is the speed of LCW queries and LCW updates as a function of the size of the
LCW database and the size of LCW formulae?

As shown in Section 4.1, LCW inference is very fast, 2 milliseconds per query, and updates are

even faster: 1.2 milliseconds. Times increase for longer queries, but are relatively unaffected by the
size of £ and M.

¢ Completeness: Because our LCW database is incomplete, a query may result in the truth
value U even though its “true” truth value is F (Figure 1). How often does this occur as the
database processes a sequence of queries and updates issued by the x11 planner?

Section 4.2 argues that the incompleteness of our LCW formulation is more of a theoretical

concern than a practical one. In over 99% of the cases that occur in practice, the LCW mechanism
deduces the correct answer.

*The only problem with this argument would arise if a Domain Growth or Information Loss update removed an
LCW sentence that had been added by Information Gain, but this is impossible because we assume that every set of
updates corresponding to a single action or event is mutually consistent.

21



¢ Impact: What is the effect of the LCW machinery on the speed with which the X1 planner
can control the Internet Softbot? In particular, does the use of LCW information improve the
agent’s performance enough to offset the cost of LCW inference and update?

Even though LCW inference is fast and effectively complete, it is still conceivable that its use
might detract from an agent’s overall performance. Section 4.3 shows that this is not the case;
indeed, LCW’s ability to focus search and eliminate redundant sensing operations yields a 100-fold
improvement in overall performance.

The experiments in the remainder of this section differ from most empirical work reported in the
planning literature along both the dimensions of realism and size. Since the XI1 planner controls the
actual execution of the Internet Softbot, we know that its domain theory is realistic in different sense
from simulated robot domains such as the Blocksworld or the Tireworld — each action description
in the theory is an accurate description of an actual UNIX command. In addition, our experiments
are noteworthy in their comprehensive aspect — we report on data collected from thousands of
planning problems resulting in over 390,000 LCW queries.

4.1 Factors Influencing LCW Speed

The interesting questions regarding LCW speed are “How fast are queries and updates on average?”
and “How does the time vary as a function of the length of the LCW formula and the size of £ and
M7?” To answer these questions we generated randomly several thousand goals as explained in
Appendix B. In the course of solving these planning problems, the XiI planner issued over 390,000
LCW queries and performed numerous updates. On average, answering an LCW query required
2 milliseconds while processing an update took 1.2 milliseconds.

In answer to the second question, Figure 3 shows query time as a function of the length of the
query and the size of the £ database.!! The graph shows the results for query sizes of up to four
conjuncts; larger queries don’t occur in our UNIX domain. In fact, large queries are uncommon
in our domain; even queries with four conjuncts occur only as a result of user-supplied V goals.
The slow growth of query time as a function of | £] is due to the use of hashing, as opposed to the
more expensive linear-time search assumed in our complexity analysis (Section 3.6). As mentioned
earlier, updates are even faster than queries on average.

4.2 Completeness

Because our LCW machinery is incomplete, QueryLCW(®) may return “No” when the agent does in
fact have LCW(®). We refer to this event as an LCW miss. Below, we explain how we measured the
percentage of LCW queries that result in LCW misses.

The problem of detecting LCW misses raises a thorny issue. LCW is a semantic notion defined in
terms of ¥, the infinite set of possible world states that are consistent with the agent’s observations.
How can we measure, experimentally, the percentage of times when the agent ought to have LCW,
but does not? Comprehending the answer to this question requires a deep understanding of the
formal basis for LCW. The definition of LCW in Section 2.2, combined with the fact that if ¢ € M

then ¥ |= ¢, implies that if LCW(®) then there is a one-to-one correspondence between instances of
® in W and in M.

"The size of M is strongly correlated with the size of £, resulting in a very similar graph of query time with
respect to the size of M.

22



{5 20 25 30

Query Time ims)
10 A5

Figure 3: CPU Time for LCW queries as a function of the size of the LCW database L, and the number
of conjuncts in the query. Experiments were run on a Sun SPARCstation 20; vertical bars indicate
95% confidence intervals. Note that even as £ grows large, the average query time is approximately
2 milliseconds. Over 90% of the 390,000 queries contained fewer than three conjuncts. Because the
sizes of £ and M are strongly correlated in all of our experiments, the graph of query time with
respect to the size of M is similar, and thus omitted.

This one-to-one correspondence is important because it can be tested experimentally via simu-
lation. Appendix B describes the methodology in more detail, but the idea is simple. We replace
the agent’s effectors (which normally manipulate an actual UNIX shell), with new procedures that
update and sense a simulation of a UNIX computer. Although the simulated environment doesn’t
model every aspect of UNIX, it is complete relative to every action that could be executed in service
of the test suite.

Thus, to check whether QueryLCW(®) has resulted in an LCW miss, we do the following: When
QueryLCW returns “No,” we check whether every instance of ® in the simulation in fact appears in
M. If so, LCW is possible, and we report that an LCW miss has occurred. Of course, this mechanism
can over-report LCW misses. Although LCW(®) is possible, and QueryLCW(®) failed, it may be that
no sensing of @ has taken place and we could not expect any agent to deduce LCW(®).

For example, if directory dir1 is empty, then both M and the simulation database will agree
on the extension of parent.dir(dirl, f), even if the agent has never executed a command such
as 1s dirl. But not knowing whether there are any files in a directory that happens to be empty
is not the same as knowing that there aren’t any, so this case would be a false miss. We are
able to eliminate some of these false misses, but not all of them. However, since we are trying to
demonstrate the success of our LCW machinery, we are content to be conservative and overstate the
number of LCW misses.

In our experiments, fewer than 1% of the LCW queries generated by XII result in misses. The per-
centage of misses does not vary significantly with the amount of dynamism, or with the percentage
of Domain Growth or Information Loss updates that occur.

Answering the question of how often misses occur independent of the Xir planner and the Softbot

23



domain is problematic, since we could construct cases in which all LCW queries are misses, or none
are. For example, suppose we have a directory containing only postscript and TgX files, and we
have LCW on the size of all files in that directory. Suppose we then compress one of the postscript
files. By the Information Loss Rule, the LCW we had on the size of all the files will be removed
from £, whereas if our LCW machinery were complete, it would retain LCW on the size of all TeX
files in the directory. Now if all queries are of the form “Do I know the size of all TEX files in
this directory?” then every query will be a miss. Perverse cases like this one in practice are highly

unlikely. This is due, in part, to the fact that failed LCW queries are likely to be followed by actions
that achieve the desired LCW.
(=]

!

400 600 800

Total Time (CPU seconds)

200

0 5 10 15 20 25 30
Experience (problems attempted)

Figure 4: The use of LCW reasoning yields dramatic performance improvements to the XII planner.

Times indicated are CPU seconds on a Sun SPARCstation 20; vertical bars indicate 95% confidence

intervals. The experiment was repeated 10 times on randomly generated initial worlds. Thus, each

of 30 distinct points on the X-axis represents the average of 10 planning sessions on randomly

generated goals. The databases M and L were left intact between goals to measure the impact of

increasing knowledge on planner performance. Thus, M and £ tend to increase along the X-axis.
The curves show a best-fit to each set of 300 data points.

4.3 Impact on Planning

We have shown that individual LCW queries are fast and that the reasoning mechanism is effectively
complete, but given that a significant number of LCW queries are performed during planning, it is still
conceivable that LCW might slow the planner down. We show that this is not the case; in fact LCW
inference speeds planning considerably by reducing redundant sensing operations. Figure 4 shows
the performance of the X11 planner with and without LCW, solving a sequence of randomly generated
goals, with M and L initially empty. The planner runs faster with LCW even on the first goal, since
it leverages the LCW information which it gains in the course of planning. In subsequent goals,

24



LCW? | % probs Total Number | Time per
solved | of executed actions | plan (sec)
yes 94% 34,865 0.26
no 8% 93,050 1.16

Table 2: The number of executions performed by xII with and without LCW on 300 randomly
generated problems. The number of executions for X11 without LCW are drastically under-reported,
because without LCW the planner could only solve 8% of the problems within the 1000 CPU second
time bound. In contrast, with LCW reasoning the planner solved 94% of the problems. Had both
versions of the planner been run until every problem was solved, we would expect a much larger
difference in favor of XII with LCW. Surprisingly, LCW also reduces the amount of time XII spends per
plan on average. This is because the non-LCW planner tends to consider more complicated plans,
which require more CPU time to evaluate.

XII can take advantage of LCW gained in previous planning sessions for an even more pronounced
speedup. Without LCW, the planner wastes an enormous amount of time doing redundant sensing.
The version of X11 without LCW completed only 8% of the goals before hitting a fixed time bound

of 1000 CPU seconds. In contrast, the version with LCW completed 94% of the goals in the allotted
time.

5 Future Work

Although we have relaxed the assumption of complete information, we still assume correct informa-
tion. Since we want our agents to cope with exogenous events, we are in the process of relaxing this
assumption as well. We are investigating two complementary mechanisms to solve this problem.
The first mechanism associates erpiration times with beliefs. If an agent has a belief regarding ¢,
which describes a highly dynamic situation (e.g., the idle time of a user on a given machine), then
the agent should not keep that belief in M for very long. Thus, after an appropriate amount of
time has elapsed, the update A(p, TV F — U) occurs automatically. Note that by the Information
Loss Rule, this update will cause LCW to be retracted as well. This mechanism is effective when
the belief about ¢ expires before ¢ changes in the world. However, unless we have extremely short
expiration times, we cannot guarantee this to be the case in general.

Thus, an additional mechanism is required that enables the agent to detect and recover from
out-of-date beliefs. This is a harder problem, because it involves belief revision, rather than mere
update. If executing an action fails, and the action’s preconditions are known, it follows that one
or more of the preconditions of the action were not satisfied — but which ones? A conservative
mechanism would retract the ground literals satisfying the action’s preconditions from the agent’s
theory. However, this mechanism could discard a great deal of valuable information. We are
investigating less conservative mechanisms.

Finally, we need to investigate increasing the expressive power of M and L. First, the intro-
duction of negation into £ would enable us to express sentences such as “I know the size of each
file in /kr94 except paper.tex,” which would make LCW update less conservative. Second, suppose
that an agent was unfamiliar with the contents of the /kr94 directory, yet executed chmod g+r *

25



while in that directory. The reasoning mechanism described in this paper is incapable of inferring
that all the files in /kr94 are group-readable.!? The LCW sentence

LCW(parent.dir(f, /kr94) A group.protection(f,readable))

is not warranted because it implies that the agent is familiar with all the group-readable files in
/kr94, which is false by assumption.

We could represent the information gained from the execution of chmod g+r * in /kr94 by
introducing the following Horn clause into M:

parent.dir(f, /kr94) — group.protection(f,readable)

The Horn clause represents the fact that all the files in the directory /kr94 are group-readable, even
though the agent may be unfamiliar with the files in /kr94. Although the mechanisms described
in this paper do not allow Horn clauses in M, this example demonstrates that such an extension
would provide increased expressiveness. Future work should determine whether this increase in
expressive power is worthwhile.

6 Conclusion

This paper described a sound and efficient method for representing, inferring, and updating local
closed world information (LCW) (e.g., “I know the size of each file in /kr94”) over a restricted
first-order theory of the sort used by planning algorithms such as NONLIN, TWEAK, and UCPOP.
To evaluate our LCW machinery empirically, we incorporated LCW into the XII planner [24, 25]
and measured its impact on the performance of the Internet Softbot [17) under a wide range
of experimental settings. As our experiments in the Softbot domain show, LCW queries require
approximately 2 milliseconds, while LCW updates require only 1.2 milliseconds on average. Although
our method is incomplete, our experiments show that inference fails to reach a conclusion in less
than 1% of the queries posed. We hope that the dramatic performance improvements engendered
by LCW reasoning will lead planning researchers to incorporate the technology into other planning
systems as well.

2Indeed, this inference is only licensed when the agent is authorized to change the protection on each of the files
in /kr94; suppose this is the case.

26



A Proofs

In many of the following proofs we rely on the following two facts:
e L contains only positive sentences.

o The variable substitution # maps a sentence ® to a ground sentence $0. Thus, once the truth
value of ®6 is known, we have LCW(®6).

Proof of Theorem 1 (Instantiation) Let ® be a logical sentence and suppose LCW(®) holds.
Let @ be an arbitrary substitution; we need show that LCW(®6) holds. ILe., by definition of LCW
(Equation 1) we need show that for all substitutions, o, either ¥ |= ®fo or ¥ |= ~®fo. But since
the composition 8o of substitutions is a substitution, and since LCW(®) we conclude LCW(®4). O

Proof of Theorem 2 (Composition) Let ® and ¥ be logical formulae and suppose LCW(®) and
Vo, = & VLCW(T0o). Let 8 be an arbitrary substitution. We need to show [ = (PA¥)I|VIE =
(@ AT)). If T = (P A ¥)6, then the proof is complete; so instead assume that ¥ (& (2 A ¥)6.
Since LCW(®), either ¥ = @0 or ¥ |= ~®0. If X |= ~®0, then clearly ¥ |= ~®0V -¥6, and the proof
is complete. If ¥ |= @0 then ¥ [~ W6 (otherwise, ¥ |= (& A ¥)#). Furthermore, ¥ = &0 implies
LCW(U0) (given), so  |= -V¥4. Thus T | —-®0 vV -¥6, which means that LCW(® A ¥). O

Proof of Theorem 3 (Conjunction) Let ® and ¥ be logical sentences and suppose LCW(®) and
LCW(V). By the Instantiation Rule, we have Vo LCW(¥0), so the condition Vo, X = o V LCW(V o)

is trivially true. Thus the Composition Rule applies, and we have LCW(® A ).
0

Proof of Theorem 4 (Disjunction) Follows trivially from the definition of LCW and Theorem
3. O

Proof of Theorem 5 (Negation) LCW(®) =Vl [T | ®0|V[Z | -®0] =V0 [Z | ~(-®9)]V[Z =
(~®6)] = LCW(=). O

27



Proof of Theorem 6 (NP-hardness of LCW queries, unrestricted L) We reduce formula
satisfiability (SAT) to the problem of answering a singleton LCW query. Let 7 be an arbitrary
propositional boolean formula. Let £ = {LCW(p V 7)}, where p is a proposition not appearing in
7, and let M be empty. We will show that the query LCW(p) fails iff there is a truth assignment
to propositions in 7 such that 7 is true. Thus answering LCW(p) in the negative can be used to
determine whether = is satisfiable.

1. Say there is no assignment such that  is true (i.e. 7 is provably false). Thus p V 7 has the
same truth value as p, so it follows from the definition of LCW that LCW(p V 7) implies LCW(p).
Therefore, the query must succeed.

2. Conversely, if  is satisfiable, then either m is provably true (a tautology), or neither 7 nor
—7 is provable. If 7 is a tautology, then so is p V 7, which is completely independent of the
truth value of p. Since we have no other information about p, LCW(p) does not follow from
anything we know, and thus the query must fail. If neither 7 nor —r is provable, then p V7
is irreducible. Since there are some truth assignments under which LCW(p) follows and others

under which it doesn’t, it’s impossible to conclude LCW(p) in general, so again the query must
fail.

The above two cases are exhaustive, so we have shown a (linear time) reduction of SAT to LCW

inference. Since formula satisfiability is NP-hard, it follows that (unrestricted) LCW inference is also
NP-hard. O

Proof of Theorem 7 Incompleteness of LCW Inference Rules We provide a simple counter-
example. Consider the case in which we know LCW(parent.dir(bak, f) A is.backup(bak)),
and we also know that is.backup(bak) is true. Since is.backup(bak) is ground and true,
parent.dir(bak, f) A is.backup(bak) always has the same truth value as parent.dir(bak,
F). It follows then from the definition of LCW that LCW(parent .dir (bak, f)). Since our inference
rules won’t derive this formula, they are incomplete. The more general problem is that whenever
all possible instances of a formula A are both known and true, LCW(AAB) implies LCW(B). For
unbounded universes, and a finite knowledge base of positive ground facts, the formula must be
ground for all instances to be known true. O

Proof of Theorem 8 Soundness of QueryLCW We use induction on the number of conjuncts in
.

Case |®| = 0: An invocation of QueryLCW induces a call to QLCW* where line 1 returns T. This
18 correct, because the null clause (i.e., a ground query with zero conjuncts) is unsatisfiable by
definition. Since every state in X agrees that the null clause is false, T|=—® and hence LCW(®).
Case |®| =k >1: If QLCW™ returns T, it must have terminated on line 2 or 6.

But line 2 only returns true when all ground instantiations, namely & itself, are entailed by M.
This corresponds directly to the definition of LCW.

Line 6 will only return T under conditions matched by Composition which is sound by Theorem 2,
or Instantiation (line 4, ® — @ = {}), which is sound by Theorem 1. Since these are the only
termination points for QueryLCW, the algorithm is sound. O

28



Proof of Theorem 9 Complexity of QueryLCW Suppose & has ¢ conjuncts, let L denote | L],
and let M = | M|. In the worst case, control falls through to line 3 entering a loop over the elements
of L. In line 6 the loop body performs a conjunctive match on M with a pattern whose length is at
most ¢ (giving a complexity O(M¢)), and then possibly makes a recursive call. Thus the following
recurrence relation defines the time required by QueryLCW:

tld = L(M® + t[c - 1})
Unrolling the recursion yields
tle = LM® + L2M° ! + I3M* 2 ...+ L°M

But checking the binomial expansion shows that this is bounded above by (L + M)°*! so QueryLCW
requires at most O((|£| + | M|)°*?) time. Given that ¢ is bounded by the domain theory, the
complexity is polynomial in the size of £ and M. O

Proof of Theorem 10 (Information Gain Rule) First we prove that for any formula, ¢, and
literal, ¢, if LCW(®) holds before action A is executed and the sole effect of A is A(p,U — TV F),
then LCW(®) still holds. Suppose LCW(®) holds and let # be an arbitrary substitution. By Equation
1, we know that [X |= ®6) V [E |= —-®0)]. Since, by the definition of A(p,U — TV F), T'6l(p, X)
= YoU(p, ¥), and by definition of U, ZolU(yp, X) = X, ¥ C ¥'. As a result, for any formula ¥ if
Y | ¥ then ¥' = V. Thus, clearly (X' | ®0] V [ |= -®6]. Next we prove that if sole effect of
Ais A(p,U — T VF), then LCW(¢) holds. By the definition of A(p,U — TVF), U(p,X') = {}. By
the definition of U, BO(X [~ ¢f A L = —ph), or equivalently, V(X |= 8 V E k= ~pf). But that is
exactly the definition of LCW(p). O

Proof of Theorem 11 (Counting Rule) Let ¢ be a literal and suppose that
Cardinality(p, M) = Cardinality(p,W). We need show that LCW(yp); in other words,
we need show that for an arbitrary substitution 8, [ | ¢f8] V [ E —¢f]. Let M denote
the {¢ € M such that ¢ is ground and 3o ¢ = po}. If pf € M then L |= ¢ and the proof is
complete, so assume that @8 ¢ M. In other words, ¢ is not in M. Let W denote the set
{¢ € W such that ¢ is ground and 3o ¢ = po}. Since we assume correct information, M C M,

and so by our assumption of cardinality M = W. So 8 € W. So ¥ |= —¢pf. We conclude LCW(¢p).
O

29



Proof of Theorem 12 (Information Loss Rule) Let & be a conjunction of positive literals
and suppose that LCW(®). Let ¢ be a positive literal and let A be an action whose execution leads
solely to an update of the form A(p, T VF — U). To prove that the Information Loss Rule is sound
in this case, we need to show that if LCW(®) no longer holds after executing A then & € REL(¢p)
(the set of beliefs removed from L£), hence the update correctly recognizes that LCW has been lost,
and £ remains conservative. Suppose that LCW(®) doesn’t hold after executing A; then there exists
a substitution, § such that [Z' j& ®6] A [’ £ ~®6] even though [E = ®6) V[T |= —®0]. Note that
since @ is conjunctive, ® = ¢; A... A ¢,,. There are two cases:

L. (2 | ®6). So forall ¢; € ® we know that £ |= ¢,0. But since X' e @0 there exists ¢;
such that X' [~ 4,0. Hence execution of A caused A(4;6,T — U). But by the definition of
A, the only updates produced by A were of the specific form, pa = ¢,;6. We conclude that
® € PREL(yp).

2. (¥ = —®6). In this case we know that 3¢; € @ such that £ |= ~¢,;0 yet T’ £ —¢;0. As
above, the restriction on A allows us to conclude that pa = ¢;6 = and ® € PREL(yp).

To show ® € REL(¢p), we now need argue that M U L £ —~(® — ¢;)0. Suppose that this is not
the case. Since M and L are conservative, & E-(® - ¢;)0 as well. Furthermore, since the only
change affected by action A had A restricted to #;0, we know that ¥’ = —($ — $;)6. But since the
falsity of a single conjunct entails the falsity of the whole conjunction (and @6 = $;0 A (P — $;)6),
we conclude that X' = ~®6. But this contradicts our assumption that A destroyed LCW(®). So it
must be the case that M U L £ —(® — $;)0. Thus ® € REL(p). O

Proof of Theorem 13 (Domain Growth Rule) Let ® be a conjunction of positive literals and
suppose that LCW(®). Let ¢ be a positive literal and suppose A is an atomic action whose only
effect is A(p,F — T). Suppose that LCW(®) no longer holds after executing A; then there exists a
substitution, 6 such that [’ [& ®0]A [T’ j= ~®6] even though [ = PO V[Z |= ~®0). A case analysis
on the these disjuncts (as in the proof of Theorem 12) yields that 3¢; € @ such that $;0 = pa
and that & € PREL(p). The contradiction argument from that proof also extends to show that
® € REL(p). Now note that after execution of 4, we have LCW(¢,0) (since we know that ¢ changed
to T), but by assumption not LCW(®8). Therefore, by the contrapositive of Theorem 3 (Conjunction),
—LCW((® — ¢,)6). This leads to ® € MREL(p). O

30



Proof of Theorem 14 (Domain Contraction Rule) Let ¢ be a positive literal and suppose
A is an action whose only effect is A(p,T — F). To show that the update rule is sound, it is
sufficient to prove that for any conjunction of positive literals, ® = ¢, A... A ¢, if LCW(®) holds
before executing A then LCW(®) holds after executing A. If LCW(®) holds before execution then,
for arbitrary 6, we know that [ |= ®6] V [Z |= —~®f]. We need to show that after executing A
(X' = @8] V [Z' |= ~®0]. Suppose, on the other hand, that [Z' £ ®6] A [X' [~ ~®6]. But since the
A effected by A only made more atomic formulae false, £’ & ~®6 implies & [~ ~®6. Since LCW(®)
holds before executing A, it follows that ¥ |= ®6 which means that & }= ¢,0 for all ¢; € . Now
consider the literal ¢ that has become false.

1. If p ¢ @ then X' |= ®0 (since the truth will be unchanged)
2. If ¢ € & then & |= ~00.

Either way there is a contradiction. O

Proof of Theorem 15 (Tractability of Updates) The proof was sketched to such an extent in
Section 3.6 that we will not repeat all details here. Note however, that the exponent ¢ (maximum
number of conjuncts in the longest element of £) is the correct one for the following reason.
Theorem 9 shows that a call to QueryLCW with an argument of b conjuncts requires ol L] +
| M|)*+1) time. When computing REL(p) or MREL(yp) however, the longest argument to QueryLCW

has ¢ — 1 conjuncts since the conjunct “z” is removed before the call to QueryLCW. (Refer to the
definition of REL and MREL). O

Proof of Theorem 16 (Minimal Information Loss) Let ¢ be a positive literal and let A be
an atomic change whose only effect is A(p, TV F — U). Suppose & € REL(¢). We need to show that
LCW(®) does not hold after A has occurred. Thus it suffices to show that there exists a 8 such that
L' |~ @0 and L' = —-®0. Since P is conjunctive, the definition of PREL(p) dictates that there exists
¢ € @ such that ¢6 = po. Since the only change from w to w' is that all instances of ¢ changed
their value to unknown, and since from the definition of REL(¢p), we also have LAM [ ~(® — ¢)6,
1e. all other conjuncts may be true in w, it follows that ®9 may be true in w'. Let M’ denote
the state of M after the update due to A, and let ¥’ denote the possible states of the world after
the update due to A. Since ®§ may be true in W/, we have that &' [¢ —~®f. Furthermore, since
M = pa, M' = @0, and thus &' & ®6. Therefore, LCW(®) does not hold. O

Proof of Theorem 17 (Minimal Domain Growth) Let ¢ be a positive literal and let A be an
atomic change whose only effect is A(p,F — T). We need show that if ® € MREL(p) then LCW(®)
does not hold after A has occurred. Since ® is conjunctive, the definition of PREL(y) dictates that
there exists ¢ € ® such that ¢ = pa. Since ® € REL(p), we know that ®0 may be true in w'.
So, &' £ ~®6. Since ® € MREL(yp), we conclude that —LCW((® — ¢)6), meaning that for some
Y € @, Y6 ¢ M'. Hence M' [~ &0, and since ® contains only positive literals we can conclude
that X' = ®8. Therefore, LCW(®) does not hold. O

31



B The Experimental Framework

The goal of our experiments was to measure the performance of our LCW machinery in a real-world
setting. All of our evaluations of LCW are through queries and updates generated by the X1I planner
in the course of satisfying randomly-generated file manipulation goals in the Softbot domain. To
make our experiments easier to control, vary, and replicate, we built a simulation environment
that allows us to generate arbitrary UNIX world states, which behave exactly as UNIX behaves in
response to actions executed by the softbot. Additionally, the simulation greatly simplifies the task
of evaluating LCW, as we discuss in Section 4.2. Nearly all the of results we report using simulated
UNIX worlds are identical to the results we would obtain if XII were executing in an equivalent,
real UNIX environment. The one exception is the report of total time in Figure 4, which does not
reflect the time required to execute actions in a UNIX shell. However, the purpose of Figure 4 is to
evaluate the impact of LCW on planning, not to measure the performance of the Internet Softbot.
Based on earlier experiments in this domain (see [24]), it seems likely that accurately reporting
execution time would only make our results stronger, since, without LCW, XII spends a greater
percentage of its time executing actions (see Table 2), and execution is expensive.

The Simulation Environment

The simulation environment consists of a current world state w;, represented as a database, which
completely specifies the state of all files and directories in the simulation, and an execution pro-
cedure that translates an action to be executed into the appropriate queries and updates on w;.
In our experiments, w, contains up to 80 directories, each directory holding between 5 and 20
files. The topology of the directory tree is random, each directory containing at most five other
directories. Filenames are all of the form dir1, file2, etc. The values of other file attributes, such
as size and file.type, are chosen randomly. Although w; doesn’t model every aspect of UNIX,
it is complete relative to every action that could be executed in service of the test suite.

The execution procedure simply computes a mapping from an action to database operations on
ws. This mapping is straightforward; all the required information is contained in the effects of the
action. For example, 1s -1a dir3 determines, among other things, the size of each file in dir3, so
the execution procedure handles the execution of 1s -la dir3 by querying w, for

parent.dir(f, dir3) A size(f, n)

and updating M with the results. Similarly, since cd dir11 has the effect current.dir(dir11),
this update is done to w; as well as to M.

The Goal Distribution

The test suite consists of a series of runs. At the beginning of each run, a simulated world w; is
randomly generated, and M and L are empty. A sequence of 30 goals is then randomly generated,
and XII is given the goals to solve one by one. M and L are left intact between goals, so for each
goal, X1I has the benefit of knowledge obtained in solving the previous goals. After the 30 goals are
completed, a new world is generated, M and L are emptied, and the process is repeated.

Our goal generator creates either universally-quantified or existentially-quantified goals. Quan-
tification aside, the two sets of goals are essentially equivalent, and consist of finding files meeting

32



certain properties, such as filename, parent.dir, word.count and file.type, and performing cer-
tain operations on them, such as compressing them, moving them to a different directory or finding
out their size. A typical goal is “Compress all postscript files in the directory /dir0/dir1/dir21.”

References

(1]

[2]

Bl

4]

[5]
[6]

[7]

8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

J Ambros-Ingerson and S. Steel. Integrating planning, execution, and monitoring. In Proc.
7th Nat. Conf. on A.L, pages 735-740, 1988.

R. Brachman. “Reducing” CLASSIC to Practice: Knowledge Representation Theory Meets

Reality. In Proc. 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning,
October 1992.

D. Brill. LOOM Reference Manual. USC-ISI, 4353 Park Terrace Drive, Westlake Village, CA
91361, version 1.4 edition, August 1991.

M. Cadoli and M. Schaerf. A survey of complexity results for non-monotonic logics. Journal
of Logic Programming, 17:127-160, November 1993.

D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32(3):333-377, 1987.

K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data Bases,
pages 293-322. Plenum Publishing Corporation, New York, NY, 1978.

Alvaro del Val. Computing Knowledge Base Updates. In Proceedings of the Third International
Conference on Principles of Knowledge Representation and Reasoning, pages 740-750, 1992.

Alvaro del Val and Yoav Shoham. Deriving Properties of Belief Update from Theories of
Action (II). In Proceedings of IJCAI-93, pages 732-737, 1993.

T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision, updates,
and counterfactuals. Artificial Intelligence, 57:227-270, October 1992.

Charles Elkan. A decision procedure for conjunctive query disjointness. In Proceedings of the
ACM Symposium on Principles of Database Systems, pages 134-139, 1989.

Charles Elkan. Independence of logic database queries and updates. In Proceedings of the
ACM Symposium on Principles of Database Systems, pages 154-160, 1990.

D. Etherington. Reasoning with Incomplete Information. Morgan Kaufmann Publishers, Inc.,
Los Altos, CA, 1988.

D. Etherington, S. Kraus, and D. Perlis. Nonmonotonicity and the scope of reasoning: Pre-
liminary report. In Proc. 8th Nat. Conf. on A.L, pages 600-607, July 1990.

O. Etzioni. Intelligence without robots (a reply to brooks). AI Magazine, 14(4), December
1993. Available via anonymous FTP from pub/etzioni/softbots/ at cs.washington.edu.

O. Etzioni, K. Golden, and D. Weld. Tractable closed-world reasoning with updates. In Proc.

4th Int. Conf. on Principles of Knowledge Representation and Reasoning, pages 178-189, San
Francisco, CA, June 1994. Morgan Kaufmann.

33



[16] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An Approach to
Planning with Incomplete Information. In Proc. 3rd Int. Conf. on Principles of Knowledge
Representation and Reasoning, San Francisco, CA, October 1992. Morgan Kaufmann. Avail-
able via FTP from pub/ai/ at ftp.cs.washington.edu.

[17] O. Etzioni and D. Weld. A softbot-based interface to the internet. CACM, 37(7):72-76, July
1994. See http://www.cs.washington.edu/research/softbots.

[18] Oren Etzioni and Neal Lesh. Planning with incomplete information in the UNIX domain. In
Working Notes of the AAAI Spring Symposium: Foundations of Automatic Planning: The
Classical Approach and Beyond, pages 24-28, Menlo Park, CA, 1993. AAAI Press.

[19] Oren Etzioni, Neal Lesh, and Richard Segal. Building softbots for UNIX (preliminary report).
Technical Report 93-09-01, University of Washington, 1993. Available via anonymous FTP
from pub/etzioni/softbots/ at cs.washington.edu.

[20] M. Genesereth and I. Nourbakhsh. Time-saving tips for problem solving with incomplete
information. In Proc. 11th Nat. Conf. on A.L, pages 724-730, July 1993.

[21] M. Ginsberg, editor. Readings in Nonmonotonic Reasoning. Morgan Kaufmann, San Mateo,
CA, 1987.

[22] M. Ginsberg. A circumscriptive theorem prover. Artificial Intelligence, 39(2):209-230, June
1989.

[23] M. Ginsberg and D. Smith. Reasoning about action I: A possible worlds approach. Artificial
Intelligence, 35(2):165-196, June 1988.

[24] K. Golden, O. Etzioni, and D. Weld. Omnipotence without omniscience: Sensor management

in planning. In Proc. 12th Nat. Conf. on A.L, pages 1048-1054, Menlo Park, CA, July 1994.
AAAT Press.

[25] K. Golden, O. Etzioni, and D. Weld. Planning with execution and incomplete information.
Technical Report 96-01-09, University of Washington, Department of Computer Science and
Engineering, February 1996. Available via FTP from pub/ai/ at ftp.cs.washington.edu.

[26] G. Grahne. The problem of incomplete information in relational databases. In Lecture Notes
in Computer Science, volume 554. Springer Verlag, New York, 1991.

[27] H. Katsuno and A. Mendelzon. On the difference between updating a knowledge base and

revising it. In Proc. 2nd Int. Conf. on Principles of Knowledge Representation and Reasoning,
pages 387-394, 1991.

[28] A. Keller and M. Wilkins. On the use of an extended relational model to handle changing

incomplete information. IEEE Transactions on Software Engineering, SE-11(7):620-633, July
1985.

[29] K. Konolidge. Circumscriptive ignorance. In Proc. 2nd Nat. Conf. on A.IL, pages 202-204,
1982.

34



[30] R. Kowalski. Logic for data description. In H. Gallaire and J. Minker, editors, Logic and Data
Bases, pages 77-103. Plenum Publishing Corporation, New York, NY, 1978.

[31] K. Krebsbach, D. Olawsky, and M. Gini. An empirical study of sensing and defaulting in
planning. In Proc. 1st Intl. Conf. on A.IL Planning Systems, pages 136-144, June 1992.

[32] H.J. Levesque. All I know: A study in autoepistemic logic. Artificial Intelligence, 42(2-3),
1990.

[33] A. Levy. Queries, updates, and LCW. Personal Communication, 1994,

[34] A. Levy and Y. Sagiv. Queries independent of updates. In Proceedings of the 19th VLDB
Conference, 1993.

[35] V. Lifschitz. Closed-World Databases and Circumscription. Artificial Intelligence, 27:229-235,
1985.

[36] J. McCarthy. Circumscription - a form of non-monotonic reasoning. Artificial Intelligence,
13(1,2):27-39, April 1980.

[37] R. Moore. A Formal Theory of Knowledge and Action. In J. Hobbs and R. Moore, editors,
Formal Theories of the Commonsense World. Ablex, Norwood, NJ, 1985.

[38] D. Olawsky and M. Gini. Deferred planning and sensor use. In Proceedings, DARPA Workshop
on Innovative Approaches to Planning, Scheduling, and Control. Morgan Kaufmann, 1990.

[39] C. Papadimitriou. Games against nature. Journal of Computer and Systems Sciences, 31:288-
301, 1985.

[40] E. Pednault. ADL: Exploring the middle ground between STRIPS and the situation calculus.

In Proc. 1st Int. Conf. on Principles of Knowledge Representation and Reasoning, pages 324—
332, 1989.

[41} J.S. Penberthy and D. Weld. UCPOP: A sound, complete, partial order planner for ADL. In
Proc. 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning, pages 103-114,
October 1992. Available via FTP from pub/ai/ at ftp.cs.washington.edu.

[42] M. Peot and D. Smith. Conditional Nonlinear Planning. In Proc. 1st Intl. Conf. on A.L
Planning Systems, pages 189-197, June 1992.

[43] O. Raiman and J. de Kleer. A Minimality Maintenance System. In Proc. 9rd Int. Conf. on
Principles of Knowledge Representation and Reasoning, pages 532-538, October 1992.

[44] R. Reiter. On closed world databases. In H. Gallaire and J. Minker, editors, Logic and Data
Bases, pages 55-76. Plenum Press, 1978. Reprinted in [21].

[45] R. Reiter. Circumscription implies predicate completion (sometimes). Proc. 2nd Nat. Conf.
on A.IL, pages 418-420, 1982.

[46] D. Smith. Finding all of the solutions to a problem. In Proc. Srd Nat. Conf. on A.L, pages
373-377, 1983.

35



[47] A. Tate. Generating project networks. In Proc. 5th Int. Joint Conf. on A.L, pages 888-893,
1977.

[48] D. Weld. An introduction to least-commitment planning. AI Magazine, pages 27-61, Winter
1994. Available via FTP from pub/ai/ at ftp.cs.washington.edu.

[49] M. Winslett. Reasoning about action using a possible models approach. In Proc. 7th Nat.
Conf. on A.L, page 89, August 1988.

[50] M. Winslett. Updating Logical Databases. Cambridge University Press, 1990. Cambridge,
England.

36



