S Paradox of the
Active User'

John M. Carroll and
Mary Beth Rosson

1 Introduction

One of the most sweeping changes ever in the ecology of human cognition may be
taking place today. People are beginning to learn and use very powerful and
sophisticated information processing technology as a matter of daily life. From the
perspective of human history, this could be a transitional point dividing a period when
machines merely helped us do things from a period when machines will seriously
help us think about things. But if this is so, we are indeed still very much within the
transition. For most people, computers have more possibility than they have real
practical utility.

In this chapter we discuss two empirical phenomena of computer use: (1) people
have considerable trouble learning to use computers (e.g., Mack, Lewis and Carroll,
1983; Mantei and Haskell, 1983), and (2) their skill tends to asymptote at relative
mediocrity (Nielsen, Mack, Bergendorff, and Grischkowsky, 1986; Pope, 1985;
Rosson, 1983). These phenomena could be viewed as being due merely to “bad”
design in current systems. We argue that they are in part more fundamental than this,
deriving from conflicting motivational and cognitive strategies. Accordingly, (1) and
(2) are best viewed not as design problems to be solved, but as true paradoxes that
necessitate programmatic tradeoff solutions.

A motivational paradox arises in the “production bias” people bring to the task
of learning and using computing equipment. Their paramount goal is throughput.
This is a desirable state of affairs in that it gives users a focus for their activity with a
system, and it increases their likelihood of receiving concrete reinforcement from
their work. But on the other hand, it reduces their motivation to spend any time just
learning about the system, so that when situations appear that could be more
effectively handled by new procedures, they are likely to stick with the procedures
they already know, regardless of their efficacy.

A second, cognitive paradox devolves from the “assimilation bias™: people
apply what they already know to interpret new situations. This bias can be helpful,
when there are useful similarities between the new and old information (as when a
person learns to use a word processor taking it to be a super typewriter or an
electronic desktop). But irrelevant and misleading similarities between new and old
information can also blind learners to what they are actually seeing and doing, leading
them to draw erroneous comparisons and conclusions, or preventing them from
recognizing possibilities for new function.

'This essay was published in Interfacing Thought: Cognitive Aspects of Human-Computer
Interaction, 1987, edited by John M. Carroll, Cambridge, MA, MIT Press, pp. 80-111. We are
grateful to John Whiteside and Phillis Reisner for critiquing an earlier version of this chapter. We
also received helpful comments from our lab’s reading group (John Black, Rich Catrambone, Bob
Mack, Jean McKendree, and John Richards)

Paradox of the Active User

It is our view that these cognitive and motivational conflicts are mutually
reinforcing, thus exaggerating the effect either problem might separately have on
early and longterm learning. These paradoxes are not defects in human learning to
be remediated. They are fundamental properties of learning. If learning were not at
least this complex, then designing learning environments would be a trivial design
problem (Thomas and Carroll, 1979). Our discussion is based on studies of the
learning and routine use of word processing systems, and we speculate on potential
programmatic tradeoff solutions to the paradoxes in this domain and generally.

2 The Active User

A colorful, and apt, image of the world of the new user of a computer system is found
in the often quoted phrase of William James: “a bloomin’ buzzin’ confusion.”
People in this situation see many things going on, but they do not know which of
these are relevant to their current concerns. Indeed, they do not know if their current
concerns are the appropriate concerns for them to have. The learner reads something
in the manual; sees something on the display; and must try to connect the two, to
integrate, to interpret. It would be unsurprising to find that people in such a situation
suffer conceptual —or even physical —paralysis. They have so little basis on which
to act.

And yet people do act. Indeed, the typical pattern we have observed is that
people simply strike out into the unknown. If the rich and diverse sources of
available information cannot be interpreted, then some of these will be ignored. If
something can be interpreted (no matter how specious the basis for this
interpretation), then it will be interpreted. Ad hoc theories are hastily assembled out
of these odds and ends of partially relevant and partially extraneous generalization.
And these “theories” are used for further prediction. Whatever initial confusions get
into such a process, it is easy to see that they are at the mercy of a diverging feedback
loop: things quite often get worse before they get better.

Designers of computer systems and training technology surely would have liked
things to have been different. The easiest way to teach someone something is, after
all, to tell them directly. However, what we see in the learning-to-use-a-computer
situation is that people are so busy trying things out, thinking things through, and
trying to relate what they already know (or believe they know) to what is going on
that they often do not notice the small voice of structured instruction crying out to
them from behind the manual and the system interface.

A similar picture appears in considering the more experienced users of computer
systems. Here, the best characterization is not one of striking out into the unknown.
Rather, it is one of relying on the known to get things accomplished. Users tend to
make use of the functions they know about to get a result, regardless of the efficacy
of the method entrained. Designers of reference and help systems count on users to
recognize opportunities for new methods, and to search out the information needed to
implement them. Instead, users often figure out how to use what they already know
to achieve new goals. They have little desire to explore new function, or to search out
information, if they can use methods they are already comfortable with to achieve the
same goal.

What is wrong? We would argue that the learning practices people adopt here
are typical, and in many situations adaptive (Scribner, 1984). The problem in this
particular learning situation is that learners are innocent in the extreme. Each feature
of a computer system may indeed have a sensible design rationale from the viewpoint
of the systems' engineer, but this rationale is frequently far beyond the grasp of the

Paradox of the Active User

new user, or indeed even a user familiar with the basic function of the system.
“Word processor,”: so far as we know, is not a natural concept. People who do not
know about word processors have little, possibly nothing, to refer to in trying to
actively learn to use such things. Innocence turns reasonable learning strategies into
learning problems (Carroll and Mack, 1984).

3 The Production Paradox

It is good to want to get something done. One would only ever want to learn to use a
new tool if one wanted first to get something done. But wanting to get something
done can also be a problem, if one lacks the prerequisites: you have to learn to do in
order to do. Merely wanting to use a new tool may be necessary but it is not
sufficient.

3.1 Problems for New Users

Training and reference materials often are designed under the assumption that people
who need to learn something will be willing to read about it, to practice skills in a
sensibly structured sequence of exercises, and finally to assemble these conceptual
and skill components into a mature competence and understanding. Further, it is
assumed that when people seek to learn more about a domain they will again be
willing to engage in these activities to develop and refine their expertise. But these
assumptions are empirically unsound. Learners at every level of experience try to
avoid reading. In structured practice, they often accidentally or deliberately get off
track and end up in lengthy and complex tangles of error recovery or self-initiated
exploration. (For details, see Carroll and Mazur, 1985; Mack, Lewis, and Carroll,
1983).

New users are not ‘blank slates’ for training designers to write upon. Indeed,
the most accurate way to think about new users is as experts in other, non-computer
domains. Secretaries trying to learn to use a word processor are not starting from
ground zero in any relevant sense. They are experts at routine office tasks.
(Unfortunately, but in all likelihood, they are far more expert than the designers of
their word processing system!) The same point can be made for any other class of
new users as they come to learn an application system designed to be a tool for them
in their work. When a domain expert tries to use a tool designed specifically to
support his or her work activities, the orientation is to do real work, not to read
descriptions and instructions, or to practice step-by-step exercises.

New users tend to jump right in when introduced to application systems. If an
operation is referred to in their training materials, they want to try it out at once. Rote
descriptions and practice are resisted, and even when complied with, prove difficult to
follow and assimilate. In a training system studied in Carroll and Mazur (1985),
there is a list of icons in the training guide identifying the applications available, but
users are not allowed to try the applications represented. After an hour or so of
training, one learner complained: “I’m getting impatient. I want to do something, not
learn to do everything.” Half an hour later, he exclaimed: “I could have typed 3000
words by now!” Users become very frustrated when training "introduces" them to
function but expects them to refrain from using it to perform a real task. Another
learner balked when instructed by an on-line tutorial to read a passage but not do
anything, exclaiming “I’'m tempted to do it anyway and then see if I can get out.”

Often, users respond to these desires to try things out, to get things done. But
jumping the gun like this, and relying on exploratory learning strategies instead of the
step-by-step rote structure of a manual or on-line tutorial, can be costly. Carroll and

Paradox of the Active User

Mazur (1985) described a learner who explored a Wastebasket function by throwing
away one and then another of the applications available on the system. This
hypothesis testing approach did in fact enable her to correctly induce the
Wastebasket operation, but at a fairly high price: she could not restore these
applications. In other cases, the heuristic reasoning strategies users bring to bear do
not even produce the correct conclusions. Another learner began drawing conclusions
about work diskettes as soon as he saw the term: “Work diskette. Does that mean it
won't work without a work diskette?” Later, he got an error message —“Work
Diskette needs recovery; Use recovery task.” —and confidently concluded that he
had initially placed the diskette in the wrong slot of the disk drive—which was a
totally irrelevant consideration in this case. Loosely reasoned hypotheses are of
course frequently wrong, yet they are attractive to users in that they allow rapid (albeit
reckless), learner-directed progress on real tasks.

3.2 Problems for Experienced Users

For more experienced users, the Production Paradox is more subtle. It is not merely
a matter of an urgent and yet premature need to produce, but rather a matter of
balancing investment of time in learning versus throughput. The issue is one of
whether it is worth the time to suspend throughput via already-learned, but perhaps
inefficient methods, to engage in learning, which only in the long run might facilitate
greater throughput.

Most computer systems and their reference libraries are designed with an
inherently rational view of users in mind. They provide a range of function from
basic to advanced, under the assumption that with experience, users will naturally
acquire the procedural knowledge that most effectively fulfills their needs. Indeed,
much of the early work in system evaluation has been guided by this
assumption—that the asymptotic level of behavior is one relatively free of errors and
inefficient strategies (e.g., Card, Moran and Newell, 1980; 1983). However, this
assumption is called into question by recent work examining routine text editor use
(Rosson, 1984a, 1984b).

In this work, users were both surveyed about their use of a text editor and
monitored during their daily use of the system. The users varied in their experience
with the editor, as well as in their experience with other editing systems, and in their
job type. This editor provides a number of advanced functions for streamlining use,
and one of the issues of interest was the extent to which such function is picked up
by experienced users.

In general, we found that many users were not discovering and using function
which could have made their jobs easier. A good example comes in the analysis of
macro use; macros are stored programs which allow for extensions and
modifications of the basic editor function. Many macros are available on a public
disk, and one thing we examined was the usage of this “extra” function. We
discovered that a large number of users had not incorporated any of the macros into
their daily activities; this was true despite the fact that the most popular macros were
ones providing very basic extensions to general editing functions, not routines
serving special-purpose functions that could be viewed as appropriate only for
sophisticated users. Thus, although there appeared to be a general need for this
added function (analysis indicated that use of the macros was indeed associated with
more rapid editing activity), the less sophisticated users (in this case, these were
secretarial and administrative users) made virtually no use of these public macros.
We speculated that this was due to the number of steps required to find out about and
use the extra function, steps that might well seem too much trouble to a user focussed
on generating end products.

Paradox of the Active User

Additional evidence that users fail to become experts is the appearance of
“pockets of expertise” in user populations (Rosson, Gould and Grischkowsky,
1982; Draper, 1984): instead of becoming generalized experts themselves, users learn
a basic set of knowledge, presumably relying on local experts to help them out when
special needs arise. In some situations, this sociological phenomenon may work out
nicely —where a work situation is structured such that specific users are assigned
topics to master, and other users are made aware of when and whom to consult.
However, in the general case, its success hinges on users' willingness to take the time
to find and consult an appropriate expert when a particular need arises rather than
making do with their more primitive skills. Unfortunately, we have no reason to
believe that users will take the time and effort to find and consult human experts any
more than they would a reference manual.

4 Approaches to the Production Paradox

As we stated in our introductory remarks, we do not see the Production Paradox as a
just a problem to be solved tout court.. We do see several approaches to the paradox,
but each is limited; indeed the three approaches we describe below are actually
inconsistent with one another if taken to logical conclusions.

One approach is to ease the focus on tangible end products for users. While it
may be natural for users of computing equipment to adopt an end-product
motivational orientation, this may not be inevitably monolithic. Other motivational
sets may be suggested or induced. A second approach is to minimize the
consequences of an end-product focus by reducing the motivation necessary for
learning. Learning that requires less motivation of the user might occur successfully
even for users focussed principally on generating end products. As a third approach,
we can try to design computing systems to better support the end-product focus: we
can give the people what they want.

4.1 Attacking the End-Product Focus

At an extreme, the end-product focus can have the effect of subjugating intrinsic
sources of reward (achievement, satisfaction of curiosity, control of the environment)
to extrinsic sources of reward (printed output, hits in a data base query).
Nevertheless, it is known that intrinsic rewards—when they can be made salient to
people —can be far more potent motivators than extrinsic rewards (e.g., Greene and
Lepper, 1979). Thus, one approach to the Production Paradox is to make the
intrinsic rewards of successfully learning and using a computing system more salient
to users.

Computer games have been investigated from this perspective. Malone
(1981a,b) argues that these games can be effective learning environments for children
by stimulating curiosity, fantasy and challenge as intrinsic sources of reward. One
might imagine incorporating aspects of a game environment into the interfaces of
ordinary application programs. For example, a version of the system could be made
available for “playing;” learners would receive points according to their ability first
to accomplish tasks at all, and second, to accomplish them in an optimal fashion.
Carroll and Thomas (1982) suggested that routine applications could be presented
under multiple interesting cover stories: the operator might be interacting with a flight
simulator but in doing so actually managing a process control application.

Intrinsic motivation might also be effectively stimulated by incorporating more
abstract elements of game environments into interface designs. One way that games
motivate participants is by conjuring a world in which uncertainty is acceptable. In

Paradox of the Active User

the well-known game of Adventure, players attempt to navigate a complex
underground cave filled with assorted treasures and dangers. At the very outset
though, they do not even know this, and as they go along they constantly encounter
new and unexplained elements in the game. They remain in a discovery mode, never
quite sure whether they are making progress or hopelessly lost. The game’s
interface dialog is structured to instill the attitude that this is all right, that uncertainty,
discovery, and risk are inevitable. There is a rationale for this: people prefer activities
whose outcomes of success and failure are uncertain (Weiner, 1980), and outcome
uncertainty has been found to maintain greater interest in an activity (Berlyne, 1967).
All this is in sharp contrast to typical application interface dialog, which implicitly
projects an end-product focus to users, ruling out uncertainty, discovery and risk
(Carroll, 1982a).

McKendree, Schorno and Carroll (1985) are currently experimenting with these
ideas in a management setting. One version of their Personal Planner system
provides prompting dialog that merely challenges the user to try things out. Other
versions of the system provide more conventional prompting dialog that identifies
correct and incorrect user responses. We expect that providing increased feedback
and specifically increasing the extent to which feedback is contingent on user goals
and explicit behavior will increase achievement satisfaction.

Attacking the end-product focus directly has apparent limitations. When one
ponders the proposals that have been made it seems evident that they will not work
for all cases: some procedures might be too intricate for dialogs that rely exclusively
on piquing the user’s curiosity; some users might find it difficult to relax their end-
product orientation. Moreover, the strategy can backfire: there are good effects of an
end-product focus, and these too may be undermined by suggesting alternate
motivational orientations —users might think of the system as a toy, or construe their
real tasks in needlessly non-directive ways. In sum, it seems that other approaches
will also be required.

4.2 Mitigating the Effects of an End-Product Focus

A second approach to dealing with the Production Paradox would be to make
learning a less motivationally demanding task. There are two ways we might reduce
the motivational “cost” of learning: make the learning safer and more risk-free, or
make the relevant information easier to find. If trying out a new function is perceived
as risk-free, a learner may be more willing to try it; it is less likely to interfere with
the goal of producing something. Several design approaches have been taken in
promoting the “safety” of systems during training. These fall into two
classes—controlling the consequences of any given action by the user, and
controlling the actions available to the user.

An extreme example falling into the first class is the “reconnoiter mode”
proposed by Jagodzinski (1983). Here, users would be able to enter a mode that
simulates the results of some proposed actions, but none of the activity has any
permanent consequence for the task. The problem here, of course, is that the
simulated activity does not move the user toward a goal in any real sense—it only
allows him or her to “try out” something that when repeated outside of reconnoiter
mode might have the desired effect.

Another approach to controlling the consequences of actions requires that each
operation have an obvious inverse. Thus, if there is a command “drop” a file, there
should be a complementary command to invert that operation and “pick up” a
file—and the names of the commands should make this opposition salient (Carroll,
1982b). In such an environment, a person can try something out at a very low cost:
if the result is not what was desired, the operation can be reversed, leaving no lasting

Paradox of the Active User

consequence. A generalization of this approach is the so-called “undo” command,
which is intended to be an inverse to any operation (or sequence of operations). Of
course, this sounds simpler than it is: What is the appropriate “grain” of undo (a
typed character, a command, a user task)? What state should you be in if three undos
are executed in sequence? (See Gordon, Leeman, and Lewis, 1984). Currently there
are only approximations of undo available.

A second class of solutions moves the control up a level, so that the options
available are controlled, rather than their consequences. So, for example, one can
design or retrofit an interface so that advanced functions and/or potentially errorful
troublespots are unavailable to beginners (or more generally to users diagnosed as
not yet ready for them). This is sometimes called a “staged” interface. Staging the
presentation of function can limit the range of errors that inexperienced users can fall
into, and therefore make experimenting with the system less risky. An example is a
system that refrains from displaying parameter options when a workable default value
is available (e.g., Smith, Irby, Kimbal, Verplank, and Harslem, 1982). While such
“progressive disclosure” restricts the range of activity available to the user, it
restricts in parallel the number of error conditions that can occur.

Work in our laboratory has developed a “training wheels” approach which
combines the two classes of solutions (Carroll, 1983). A training wheels interface
displays all of the function choices of a full function system, but disables advanced
and provocative incorrect choices during the early stages of a user’s learning.
Making one of these choices merely elicits a disablement message indicating that the
selected function is not available during training, leaving the user in the same system
state. Thus, while the learner is allowed to make an “error” (choosing an incorrect
option), the consequences of the error are minimized.

We have carried out several experimental evaluations of the training wheels
system. We asked learners to use either the training wheels system or the complete
commercial system to learn to type and print out a simple document. The results of
these studies were quite encouraging: learners using the training wheels system got
started faster, produced better work, and spent less time not only on the errors that
our design blocked, but on the errors we did not block —indicating a generalized
facilitation of learning. Moreover, the magnitude of these advantages increase over
the course of the experiment. Finally, the training wheels learners performed better
on a system concepts test we administered after the experiment. (See Carroll and
Carrithers, 1984).

An important complement to making learning safe is to make information about
new function easy to find and understand. Users focussed on a particular task may
be much more likely to enter into “learning mode” for a time, searching for new
knowledge, if they believe that the knowledge will be easy to come by. One way to
encourage this perception would focus on the reference materials available to a user.
In the system studied in Rosson (1984a), the reference material (manual, reference
card, and help screens) is organized in a linear, alphabetical fashion. This is true
despite the fact that a large proportion of the 140 commands are never used
interactively; they are issued only from within macros or stored procedures. As a
result, a user looking for information on commands useful to him or her at the
terminal must wade through a number of commands unlikely to ever be used by other
than a very sophisticated user. A relatively inexpensive improvement to such
materials would be to take into account actual usage patterns, rather than simply
alphabetical ordering, in organizing the material.

A more expensive approach would be to use the computer as an active partner in

learning. One might imagine a system that is able to determine the most effective
path for reaching any given goal. When users recognized limitations in their current

Paradox of the Active User

knowledge, they could query the system for a better method. An even more radical
approach would be to allow the system to take the initiative, thus removing the
requirement that users be motivated to look for learning opportunities (e.g., Shrager
and Finin, 1982). Of course, such methods assume considerable intelligence on the
part of the system, at a level yet to be provided in any real system. But even partial
systems of this sort—a system that recognizes and understands only a limited set of
common inefficient methods, for example—could contribute considerably to the goal
of making the discovery and use of new function easier.

The various approaches to reducing the motivation required of the user that we
have reviewed must be qualified in terms of their potential and current limitations.
Many of these proposals have yet to be implemented for serious testing; reconnoiter
mode and undo do not really exist in nonapproximate forms. And although some
work has been done on systems able to observe users and make suggestions, at this
point the domains studied have been rather restricted. Further, the proposals that
have been implemented have generally not been studied very thoroughly in terms of
their behavioral concomitants. While progressive disclosure makes a priori sense, we
know of no empirical work examining its effectiveness. The training wheels
approach has only been studied for a single computer application (word processing)
and a single interface style (menu based control).

A host of behavioral questions remain open. How can systems transit between
stages so as to most facilitate transfer of old knowledge and incorporation of new
knowledge? What effects will the blocking of error consequences have on learning
in the long run? Preliminary results from Carroll and Kay (1985) suggest that
certain types of protective interfaces may have a negative effect on subsequent
learning, indicating that the nature of the “block™ will be critical. If not presented
carefully, a system that volunteers suggestions for improvement may be so disruptive
as to wipe out any benefits to learning. And of course, there is the danger that by
making learning too easy, we will make it too passive. If all problems are
automatically analyzed, and suggestions for improvement directly provided, users’
motivation to learn may be reduced even further, due to lack of challenge. Clearly, the
issues here are complex, and it is unlikely that a single approach will be sufficient.

4.3 Designing for the End-Product Focus

We need not take the learner’s focus on tangible products to be the problematic
aspect of the Production Paradox. As a complement to designing around the end-
product focus, that is, by making the system itself more intrinsically interesting or
more safe to navigate and easy to learn, we can directly exploit the user’s desire for a
product by using it to drive learning. We can take the production bias as our starting
point, and attempt to design systems and learning environments which actually
depend on such an orientation.

An example is the Guided Exploration cards studied by Carroll, Mack, Lewis,
Grischkowsky, and Robertson (1985). This training approach challenges the
assumption that a linearly structured training manual format is the most appropriate
training tool. The cards are more task-oriented than manuals in that each card
addresses a particular functional goal that users can understand on the basis of their
understanding of office tasks (irrespective of computers). The cards are designed to
keep learners focussed on and involved in the learning task by being intentionally
incomplete, often relying on hints. The cards are also more simply organized than
manuals. Each card attempts to address its functional goal without reference to
material covered on other cards. Finally, each card includes specific checkpoint
information (to help learners detect and diagnose errors) and error recovery

Paradox of the Active User

information (to help them get back on track). In addition, there is a general “What if
something goes wrong?” card that described remedies that applied anywhere.

We performed experimental evaluations of Guided Exploration cards and state-
of-the-art self-study training manuals. Learners using the Guided Exploration cards
spent substantially less time yet still performed better on a transfer of learning post-
test than learners using the commercially developed self-study manual. Taking
learning efficiency to be achievement per unit time, we found that the cards were
nearly 3 times as efficient as the manual. Moreover, qualitative analysis of learning
protocols shows that the Guided Exploration cards worked as they were designed to
work: they increased attention to the task, they encouraged learners to explore (and to
do so successfully), they helped learners recognize and recover from errors, and they
provided a better understanding of learning goals.

While this work was carried out for novice user groups, many of the objectives
and techniques of the work should apply to more experienced users as well. Indeed,
some systems now include “job aids” cards which are in many ways a
generalization of Guided Exploration cards. Other possibilities can be imagined.

For example, one might design reference material for advanced function in a text
processing system that is organized according to real-world goals, rather than system
function. In such an environment, a user’s first exposure to a macro facility might
come in discovering how to update a bibliography, with the result being a better
association to actual needs. Work such as this is underway at University of
California (e.g., O’Malley, Smolensky, Bannon, Conway, Graham, Sokolov, and
Monty, 1983). The approach there has been to request goal-oriented comments from
users during their interactions with a system, and to base recommendations for
structuring reference materials on an analysis of these goals.

A separate area, now barely beginning, is the design of advice-giving
systems—systems which are designed to help the user better articulate his or her own
goal (Coombs and Alty, 1984). While this approach shares some similarities with
the intelligent help systems described in the previous section, a distinction exists in
the level at which suggestions are made. Instead of offering advice about ways to
“tune” a method for achieving a given result, these systems would attempt to assist a
user in developing and organizing task-oriented goals from the start.

Like the other approaches we have considered, attempts to design for the end-
product focus carry limitations. The proposals that have actually been implemented
and studied all rely on the user to have appropriate goals. But clearly this assumption
may not hold. If the user of Guided Exploration cards has a defective analysis of
what he is trying to do, or if the analysis is at a different level than that provided by
the card titles, this training approach may fail. And while we have suggested that
intelligent problem-solving aids may contribute to this piece of the process, it is not at
all clear that such systems can truly be developed. Finally, even if we assume the
availability of appropriate goals, end-product approaches may ultimately impair
breadth of learning. An organization of knowledge by particular task procedures
may produce isolated modules of understanding that will be difficult to combine
when novel tasks are encountered.

5 The Assimilation Paradox

If we knew nothing at all, it is difficult to imagine how we could make any progress at
learning anything at all. Almost every new idea we learn comes to us through the
graces of things we have already mastered. Nevertheless, this unavoidably good

Paradox of the Active User 10

learning strategy cannot be the whole story —or indeed we would never learn
anything truly new (Bartlett, 1932; Piattelli-Palmarini, 1980).

5.1 Problems for New Users

In discussing the Production Paradox, we made the point that even new users should
be thought of as experts, albeit not in the computer domain. As such, their natural
approach to a new tool is to try to use it—not simply to learn about it. As experts,
new users also know a lot, though what they know is not necessarily relevant to the
computer domain. Nevertheless, even a little knowledge can be a dangerous thing,
particularly in a situation that invites the inference that it is relevant when it is not.
This is a typical problem for new users of computer systems.

New users of word processing applications often try to understand their systems
by reference to what they already know about typewriters (Carroll and Thomas,
1982). The metaphor of a typewriter can be useful in this context. But it can also
lead to trouble. New users are often surprised that the Space Bar, Backspace key,
and Carriage Return can change the format of their documents (including deleting
characters and inserting special format characters into the document), as well as
performing their more familiar typewriter functions. Learning is of course facilitated
by the typewriter metaphor, but those places where the metaphor breaks down strain
this advantage (see also Douglas and Moran, 1983).

We have seen similar problems in studying learners interacting with systems
based on the “desktop” metaphor, where users are invited to make the comparison
of an office system's directory objects to physical desktop objects like stationary,
stationary pads, and folders. In one extended episode a person tried to create some
test documents and then to store them. He started with a “folder,” and was
somewhat unsure what to do with it. He found operations for “making a stationary
pad” and “tearing off stationary,” which seemed consistent with his original goal,
and tried them. Unfortunately, the interface metaphor strains a bit here: what he got
was a stationary pad of folders from which he tore off a folder. This never quite sank
in and for almost a hour he labored, selecting and making stationary pads, tearing off
stationary, but never creating and storing a test document. The episode finally
produced only a confused question: “Why can I sometimes make a stationary pad
and not tear off stationary and other times I can tear off stationary but not make a
stationary pad?”

Another aspect of this problem is that by relying on metaphors, learners impair
their ability to correctly anticipate the function of the system they are learning. For
example, if one conceives of an office work station as a super-typewriter, then it is
doubtful that one will tumble to an anticipation of its capabilities for formatting
alternate fonts or for integrating text functions with graphics, database, and
spreadsheet functions.

5.2 Problems for experienced users.

Again, for experienced users the problem is somewhat more subtle. Experienced
users, by definition, either have experience on another system or systems, or they
have prior experience on the current system. In both cases, they have established
patterns of behavior and understanding that can interfere with the establishment of
new patterns. Thus, people who have some experience with traditional half-duplex
systems (which require pressing an Enter key to send buffered interactions to a host
processor) may have trouble adjusting to full-duplex systems (in which each
keystroke is an interaction with the processor, and in which Entering is not
necessary): they expect to need Enter (much like a novice application user might

Paradox of the Active User 11

expect word processing functions to behave like the typewriter's Space Bar and
Backspace). In the survey work of Rosson (1984b), one of the most frequent classes
of responses to the question “What things about <the editor> were especially
difficult to learn?”” described functions in the editor similar to, but slightly different
from, those available in a previously used editor.

This type of learning problem is called negative transfer, the inhibition of later
learning by prior learning of related material. The classic demonstrations of the
phenomenon have been in the context of unrelated word lists (e.g., Underwood,
1957), and the effects are much less robust in real-world situations. However, it is
clear that there is some disruption caused by the mapping of new command names or
function keys to identical or similar function goals. Fortunately, while the
interference can be frustrating during initial learning, it tends to be a short-lived
problem, one that disappears if the learner discontinues use of the old system. And in
general, its negative effects are more than compensated by the positive transfer that
occurs for more general system concepts (Singley and Anderson, 1985).

There is another component of the assimilation paradox, however, that can have
long-lasting effects. Prior knowledge not only can mislead users about how a system
will work, but also it can in a sense put blinders on them, preventing them from fully
anticipating the function available. This negative effect of prior knowledge can be
especially debilitating, because often a learner may be completely unaware of the
problem.

Evidence of these limiting effects of prior knowledge is seen in the routine
editing behavior analyzed by Rosson (1984b). So, for example, one feature of the
editor used by individuals in this study is a set of program function (PF) keys that
can be used to speed up editing activities through assignment of frequently used
functions to single keypresses. We discovered that larger function key repertoires
were in fact associated with faster work rates; however, there was no tendency for key
repertoire to be greater for the users most experienced with this particular system.
Instead, use of the keys appeared to be a function of users' experience with other
editors —specifically, experience with other screen-oriented systems seemed to
encourage use of a greater number of PF keys. We believe that users' experience
with other systems that rely heavily on function keys allowed them to recognize
similar possibilities in this system. In contrast, users familiar only with more
traditional command-driven systems were blinded to the many opportunities for
extending their editing methods that these programmable keys provide.

6 Approaches to the Assimilation Paradox

As in the case of the Production Paradox, we will describe three different approaches
to the Assimilation Paradox. One approach is to attack the assimilative tendency, to
try to get people to deal with the system on its own terms, as it were, and not “as if”
it were similar to something else they already know about. A second approach tries
to compromise, simplifying the assimilation processes required of (or offered to)
users, and therefore hopefully mitigating the force of the paradox. Finally, a third
approach manipulates the assimilative opportunities for the user, deliberately
highlighting inconsistencies between the current situation and the prior knowledge
engaged in order to stimulate new learning.

6.1 Attacking Assimilation

As we remarked above, we doubt that the tendency for people to try to learn
assimilatively can be altered. Nevertheless, effort could be directed at limiting the

Paradox of the Active User 12

apparent similarity of a new experience to some prototype of past experiences. If we
think of this relativistically we might expect that the trackball as a pointing device for
text applications would be less susceptible to inappropriate assimilation than are step-
keys for cursor pointing. The latter work very similarly to typewriter pointing via the
Carriage Return, Space Bar, and Backspace. As a result, users might be less likely to
begin with misconceptions about how a trackball works, and might be more likely to
imagine, and to learn, novel aspects of its function.

One could also take an instructional approach, specifically directing the learning
experience, advising against assimilation at least in certain cases. Interface
metaphors, like the desktop and typewriter comparisons mentioned earlier, have only
recently been incorporated into system training and documentation. Perhaps we need
to qualify these explicit invitations to assimilative learning strategies. Halasz and
Moran (1982) assume this, suggesting that users be provided with explicit models of
the system, highly accurate and arbitrarily complete descriptions, usually in some
abstract format, like a flow-chart or a graph (e.g., du Boulay, O'Shea and Monk,
1981; Moran, 1981; and Young, 1981). Indeed, they suggest that the user be warned
against apparent metaphors and analogies in favor of this more literal conceptual
model.

One thing that explicit system models have in common with analogical models is
that both focus on concepts users need to master in order to have “understood” the
system—as opposed to the operational procedures users must execute in order to use
the system. This distinction suggests another approach to attacking assimilation,
namely to forego attempts to encourage “conceptual” models at all —literal or
analogical. Instead, user training and interaction could be aimed strictly at the
procedures a user must execute, minimizing the conceptual material incorporated into
these descriptions. An example is the teaching of recursive programming to students
learning LISP. Pirolli, Anderson and Farrell (1984) found that students learned
recursive programming much more quickly if directly provided with the
programming procedures, than if provided with a conceptual model of recursion.

There are apparent limitations to approaches that try to eliminate assimilation.
For example, can a designer really provide the user with a conceptual model that does
not evoke assimilation, as advocated by Halasz and Moran? Carroll and Mack
(1985) argue that when such a model is codified in any way (e.g., on paper as a graph
or a chart), as it would have to be in order to function as an instructional tool, its
interpretation will require prior knowledge about such representational formats and
their characteristic interpretation. To the extent that this process is not automatic and
determinate, it will be assimilative. Thus, there is no sharp dichotomy here and no
way to eliminate assimilation in foto.

It is also not clear that strictly procedural materials can really be developed. The
examples available so far either provide implicit conceptual content (e.g., trading on
understood conventions for flow-charts and graphs) or confound conceptual content
per se with difficulty of material (Pirolli et al. reduced conceptual content by
eliminating conceptual material on recursion, but in doing so eliminated a notoriously
difficult concept as well). Perhaps the most severe limitation is that non-assimilative
materials —if they can be developed —may be inappropriate for real users. Detailed
descriptions and step-by-step directions, such as those one might find in a state-of-
the-art self-instruction manual, are often close approximations to the explicit model
approach of Halazs and Moran or to the pure procedural approach, but they are
inconsistent with the propensities and capacities of actual learners trying to master
computing systems (the Production Paradox).

6.2 Mitigating the Effects of Assimilation

Paradox of the Active User 13

A second approach to the Assimilation Paradox would be to accept assimilation as a
given of learners and learning, and to try to design systems such that potential
negative effects are minimized. One way to do this is to simplify the assimilative
process by reducing the “assimilative gap.” For example, one could take a strong
view of metaphors in which the metaphor comparisons would have to be completely
obvious and true: if the word processor appears to be “like” a typewriter, then it
indeed would be operable in exactly the same way as a typewriter. Extending this
idea, one could approach computer system design in general from the perspective of
naive and intuitive expectations, designing the appearance and operation of systems
so that they optimally accord with user expectations. What the user sees and predicts
when introduced to the system is guaranteed to be correct by the designer.

One example of such an approach is the principle of direct manipulation
described by Shneiderman (1983). He argues that wherever possible, the operations
available to a user should be based on physical metaphors. So, for example, instead
of issuing commands to modify textual material indirectly, word processors should
allow users to move directly to text to be edited, and press buttons to produce the
desired changes. This approach may not be extensible, however: it is by no means
clear that there will be appropriate physical analogs to computer system function in
the general case. Further, the approach is based on the fundamental assumption that
a physical analog will indeed provide the best match to learners’ naive expectancies
about system function. The validity of this assumption has yet to be demonstrated.

A related approach incorporates naive expectations about system operation, but
develops the understanding of users' intuitions through empirical observation, rather
than through analysis and assumption. Mack (1984) provides an example of this
approach, in his design of a word processing system based on a prior study of naive
users’ expectations about how such a system would work. In observing learners’
interactions with the resulting system, however, Mack discovered that the goal of
matching naive intuitions is a difficult one to meet. Intuitions are often very complex,
inconsistent, even irrational. Further, not all users have the same intuitions,
suggesting that designing an intuitive interface for the general case may be an
impossible task. Mack’s solution to this was to use behavioral observations as a
starting point for his design, relying on an empirically-driven iterative process to
point to modifications and additions not suggested by the initial corpus of naive
expectations.

The problem of nonconvergent user expectations is not merely an issue of
“early learning,” something users outgrow. Mayer and Bayman (1981; see also
Bayman and Mayer, 1984) asked students to predict the outcomes of keypress
sequences on a calculator. All of the students were experienced users of calculators,
but nonetheless their prediction responses varied considerably. For example, some
predicted that an evaluation occurs immediately after a number key is pressed, some
predicted that evaluation occurs immediately after an operation (e.g., plus) key is
pressed, and some predicted that an evaluation occurs immediately after equals is
pressed. The variability and the inaccuracy of these predictions varied as a function
of the student's prior training in programming, but it is open as to whether this is a
smoothing effect of experience or of aptitude.

Other research has explored the possibility of addressing nonconvergent
expectations by providing increased flexibility. Furnas, Landauer, Gomez, and
Dumais (1984) analyzed naive users’ intuitions about function names and found
considerable variation among users. They developed a limited natural language
facility with multiple levels of keyword synonyms for an information retrieval
application (Gomez and Lochbaum, 1984). Good, Whiteside, Wixon and Jones
(1985) used a similar approach in developing an electronic mail application. These
interfaces could simultaneously meet the different expectations of different people.

Paradox of the Active User

A major limitation of approaches that seek to reduce the assimilative gap directly
has been the size of the example systems developed. So, for example, all major
examples of direct manipulation interfaces are small systems with relatively little
function (experimental simulations or hobbyist personal computers for the most
part). Intuitive design approaches have also addressed small-scale systems
environments. There has yet to be a demonstration that this empirically-driven
mapping between interface and intuitions will work for more complex real-world
systems. Finally, there remains the possibility of a more general cost of eliminating
the assimilative gap: if learners are no longer required to “work’ for their new
knowledge, they may fail to engage in the active processing critical to building a rich
and flexible understanding.

6.3 Designing for Assimilation

A final approach to the Assimilative Paradox exploits the accommodation that can
occur when assimilation fails. The terms assimilation and accommodation are
associated with the theory of Jean Piaget (1954) in whose view the two are natural
complements: learners assimilate experience into mental structures as possible, and
then accommodate mental structures to experience as necessary. Computer interfaces
and accompanying materials can be deliberately cast to stimulate direct comparisons
between the current situation (the system itself so to speak) and whatever prior
knowledge is engaged by the current situation, thereby highlighting key similarities
and differences. These comparisons must be engineered to stimulate inferential
processing, hypothesis testing, and active learning (Carroll and Mack, 1985;
Whiteside and Wixon, 1985).

Consider the often referred to computer interface metaphor “a text editor is a
super typewriter.” Not all properties of a typewriter can be carried over to a
developing concept of a text processor. Some can (the layout and character-
transmission function of the keys); some cannot (character keys cannot
straightforwardly be overstruck using a text editor); and some can be mapped from
the typewriter base, but somewhat problematically (e.g., with respect to the storage of
information, the tape recorder provides an alternate—and in some ways more
accurate —metaphor). The comparison of a text editor with a typewriter carries all of
these implications. The obvious similarities in function and form afford the metaphor
in the first place: text editor learners almost never puzzle over what will happen when
they strike a character key. In the context of such canonical and salient
correspondences, the dissimilarities between the text editor and a typewriter become
open questions —impelling further thought and leading then to further learning.

For example, keying two characters at the same location on a conventional typed
page results in an overstrike. However, text editors do not produce overstrikes (in
this way). They either insert (i.e., place the new character adjacent to the old one, and
adjust the text line accordingly) or replace (i.e., place the new character where the old
one was—deleting the old one). Conventional typewriters, of course, do not have an
insert or replace capability; this is a clear dissimilarity in the metaphor. But this
incomplete fit is not a functional a limitation on the metaphor. Salient
dissimilarities —in the context of salient similarities— stimulate thought and afford a
concrete opportunity for developing an enhanced understanding of the electronic
medium (e.g., the concept of dynamic storage).

Consider an example from a computer system that is based on the metaphor of a
desktop. In this system objects and their manipulations are represented concretely (at
least on the surface): for example, to create a new document file, a user is prompted
to initiate an action roughly described as “tearing off paper,” in the context of an
icon representing a pad of paper. One user we observed took the prompt quite

14

Paradox of the Active User 15

literally. He tried to execute the action of “tearing” by sweeping the cursor across
the icon representing the paper. In fact, the metaphor is misleading in this case
because actions applied to objects like files (or applications) must be selected in a
more conventional fashion, from menus which describe the actions. Was the
metaphor a failure? In fact, the experience was informative: the user understood that
the desktop metaphor has certain boundary conditions, but more importantly he had a
specific insight into the concept of selection and the fundamental role it plays in this
interface (see Carroll and Mack, 1985).

The cognitive engineering challenge that inheres in designing for assimilation is
formidable. In this approach, we design not merely to enhance simplicity, but to
manage the presentation of complexity, to stimulate and guide an active problem-
solving orientation and thereby to elicit better learning and more skilled and fulfilled
routine performance. Much evidence indicates how these processes can go awry
when they are not guided effectively. Thus, Scandura, Lowerre, Veneski, and
Scandura (1976) described a student who came to the conclusion that the equals and
plus keys on a calculator had no function by observing that the keys caused no
visible change in the display. Norman (1983a) described learners who
superstitiously pressed the clear key on calculators several times, when a single a
keypress would do.

A key problem with designing for assimilation is determing how and when
assimilative opportunities should be provided to learners. A classic approach has
been to provide learners with advance organizers (Ausubel, 1960) that engage and
direct appropriate prior knowledge. The idea is that making relevant prior knowledge
available at the outset allows it to be brought to bear on the variety of problems that
the user actually encounters, hence increasing the chance that the learning will be
meaningful. This approach has been used in studies of learning computing (Foss,
Rosson, and Smith, 1982; Mayer, 1976). It is difficult, though, for the designer to
predict if the prior knowledge engaged by the advance organizer will still be salient to
the user when an opportunity for assimilation occurs.

7 Is Effective Learning Possible?

In couching our discussion in the language of paradoxes, we have not intended to
project the connotation of hopelessness, just of complexity. A paradox, in this sense,
is a problem utterly refractory to a simple, comprehensive, logical treatment. Human
learning is in this sense paradoxical. We do not believe that there is a simple,
comprehensive, logical treatment of human learning in the offing, now or ever. But if
the problem is complex, it is surely not hopeless. We have raised a number of
suggestions as to how the paradoxes of learning can be addressed. However, as we
have pointed out along the way, these solutions themselves have problems.

A premise of our discussion has been that the paradoxes of learning must be
taken seriously, not as defects or errors but as fundamental patterns of learning. One
could question this premise, and clearly there are no demonstrative arguments either
way, but it seems to us that the inevitability of both paradoxes is plausible. If learners
were less focussed on action, the Production Paradox could be avoided. But the cost
would be that the connection between knowledge and performance goals would be far
less stable, far less direct. If learners were to rely less on prior experience, the
Assimilation Paradox could be avoided. But here the cost would be a far less stable
and direct connection between prior learning and new learning achievement. Both the
paradoxes point to a single—and perhaps disturbing—fact of mental life: adults

Paradox of the Active User

resist explicitly addressing themselves to new learning (see also Knowles, 1973;

Kidd, 1977).

If we are correct, the paradox of the active learner entails specific a priori
limitations on how much we can accelerate learning— limitations that apply
irrespective of design intervention. Our only course, however, is to address the
paradox through design, resigning ourselves to inevitable trade-offs (Norman,
1983b). In our discussion of approaches to the Production and Assimilation
Paradoxes, we have considered solutions from three often conflicting perspectives:
direct attacks on the underlying learning tendency, ways to limit the effects of the
tendency, and attempts to take advantage of the tendency in a creative way (see Table

5.1).
Table 5.1
Summary of the Active User Paradox
Strategy Approach Example
Production Attack Make learning the Systems as games;
paradox: Users system intrinsically Performance
focus on end rewarding feedback
g;%(él:lztes (?ft the Mitigate Make learning the Training wheels;
prerequisite system easy Undo
learning Design for | Exploit the user’s desire | Guided exploration
for a product by using it | cards
to drive learning
Assimilation Attack Repress potential Explicit system
Paradox: Users connections to prior models; Performance
apply prior knowledge feedback
knowledge even Mitigate Make or describe the Direct manipulation;
when it does not T
apply system as truly similar to | Natural language
something familiar
Design for | Exploit the Incomplete
accommodation that can | metaphors

occur when assimilation
fails

In discussing the Production Paradox, we suggested that one solution might be
to try to reduce learners’ production bias by making the system more intrinsically
interesting. But it is not clear that all systems can be presented in this fashion, and
even if they could, we can not be sure that the effects of such an approach would be
uniformly beneficial —users might well come to see the system not as a useful tool,
but rather as a toy to play with on occasion. The other solutions have their own
problems: if we try to get around learners’ motivation to produce rather than learn,
by reducing the cost of learning— perhaps through error blocking and guided
discovery of function—we run the risk of making learning too passive, or of setting
up learning situations that may not transfer to subsequent usage scenarios. And
finally, if we accept learners’ end-product focus, and try to design systems and
training materials to take advantage of it, we risk either guessing at inappropriate
goals for users or relying on users to structure their own goals, a task they for which
they may be poorly prepared.

16

Paradox of the Active User

Our analysis of solutions to the Assimilation Paradox also pointed to limitations
in each case. If assimilation is attacked directly, through designs too novel to
assimilate, or through explicit instructions intended to eliminate assimilation, any
learning that does take place may be quite fragile, due to its lack of connection with
the learner’s wealth of past experiences. And if we try to mitigate the problem by
reducing the assimilative gap as much as possible, we may set ourselves up for
designs that are trivial and offer little new function. Further, the “learning” involved
here would again be extremely passive, requiring little cognitive effort on the part of
the user, and might well lead to a less comprehensive understanding. Lastly, it seems
attractive to contemplate designing for assimilation, attempting to incorporate
concepts which have a natural link to prior knowledge, while stretching the mind by
introducing inconsistencies at appropriate stages. However, the development of
metaphors and other learning guidance for this is difficult, and only now beginning to
have impact on user interface designs.

The paradoxes themselves are best thought of as indicative of fundamental
orientations to learning, as properties of the learning. Of concern to us as design
scientists, however, is the status of the solutions we have described. We have pointed
to specific limitations in each case, and it is by no means clear that they can be
resolved in any satisfactory way. It is important to note, though, that many of the
limitations in these solutions stem from our analysis of the state of the art in interface
design. We are not rejecting in principle the possibility that breakthroughs in design
might speak to these problems in ways we cannot anticipate now. But frankly, we
doubt it.

8 Learning and Design

We have argued that the issues associated with these paradoxes are complex enough,
and the tradeoffs implied by the various solutions significant enough, that any single
approach will not be sufficient. Rather designers will need to creatively sample from
complementary or indeed even competing approaches. In this section, we briefly
describe a method for undertaking such an eclectic process, illustrated by recent work
on training manual design (for greater detail, see Carroll, 1984; Carroll and Rosson,
1985).

The first stage of design is analytic. It consists of the eclectic sampling of
design elements implied by state-of-the-art empirical work, as well as by formal
analyses of the design problem (e.g., as in Moran, 1981 and Reisner, 1984). An
important constraint, though, is that the sampling be user-centered: it must be done in
the context of specific considerations engendered by the particular design domain at
hand: Who are the users? What are their special interests, needs, and difficulties?
How does the particular system address these? None of this is front page design
news. It makes perfect sense to have an understanding of what you are designing
and who you are designing it for before you begin work —and to take advantage of
whatever theoretical base is currently available (guidelines, user complexity metrics,
etc.). Often, though, designers focus on a single approach to usability problems (e.g.,
the use of physical metaphors). We argue instead that they should be encouraged to
incorporate complementary or even contradictory principles into their initial analysis.

The second stage of design involves detailed empirical testing of the subskills
that will determine users’ success with the system. This subskill analysis should
also center on the activities of the intended users: What subskills are necessary for a
typical user to perform a typical task on the system? Thus, a planning application
intended for personnel managers to use in preparing salary and promotion plans,

17

Paradox of the Active User 18

must be tested on a set of typical personnel managers who are asked to use it to
prepare typical salary and promotion plans. Relevant subskills might be an ability to
describe the steps needed to accomplish a given task, a paraphrase understanding of
menu selections and prompts, and an ability to recover from some of the more likely
error states.

Because the goal of subskill testing is to rapidly gather detailed information
about design elements, the testing should be qualitative rather than quantitative in
nature, producing diagnostic rather than performance measures. Interpretation
should focus on inadequacies in both the function provided by the system, and the
interface for the user. For example, close observation of managers interacting with
our hypothetical personnel planning application might reveal both that salary and
promotion plans need to share data in particular ways (a function problem), and that
typical personnel managers misunderstand certain specific prompts in the system
dialog (an interface problem). This information must then be fed back into the
design process so that the next iteration can remedy the problems. Subskill testing is
inevitably a process of discovery and one in which the original design undergoes
important changes.

While reiterative subskill testing guarantees a sort of local optimization of the
design, it is not directed at providing an objective benchmark assessment of the final
success of the design. Nonetheless it is useful in the end to know just how good a
design really is, for example, relative to other contrasting designs or relative to
particular usability goals. For example, can the final planning application for salary
and promotion plans be used for routine tasks by typical personnel managers after
one hour of training? Can it be learned faster than the current state-of-the-art
alternative systems? Criterion testing is an important third stage of design, providing
a means of empirically validating the results of the eclectic, iterative approach taken in
the first two stages. We turn now to a description of a case study in which this three-
stage approach was employed.

The development of the Minimal Manual (Carroll, 1984; Carroll, Smith-Kerker,
Ford, and Mazur, 1985) exemplifies of the eclectic design process we have described.
The initial design of the manual was a response to a number of observations about
how naive users learn to use word processing systems, and many of these
observations have already been discussed in illustrating the Production and
Assimilation Paradoxes. But it is the design response to these paradoxes that is of
particular interest here, because it reflects a sampling of approaches that might at first
seem in conflict.

The Minimal Manual design work addressed the Production Paradox by
simultaneously attempting to both attack and support the end-product bias. Thus, the
manual included On Your Own sections that encouraged users to apply the
procedures they had just worked through to new problems of their own choosing,
leaving the instructions intentionally incomplete in an effort to promote intrinsic
interest in the learning process through a performance challenge. This aspect of the
design directly competed with another aspect, which was to support the end-product
bias by streamlining prerequisites and focussing training activity on the production of
real work output. In this case, two apparently conflicting strategies were consciously
combined to yield a richer design solution.

The design approach adopted for problems stemming from the Assimilation
Paradox was similar. A major feature of the Minimal Manual design was the removal
of the conceptual material often found in training manuals, and a focus instead on
concrete procedures. This constitutes an aftack on assimilation through an emphasis
on procedural rather than conceptual knowledge. However, this approach was
combined throughout with instances of designing for assimilation through the careful

Paradox of the Active User 19

use of metaphoric references. So, in describing procedures for removing unwanted
line-end characters from the data stream, the manual specifically introduced the
“blank line” metaphor as a way of identifying the problem. Importantly, though, it
then went on to identify the difference between the metaphoric reference (a physical
blank line) and the word processing problem (the presence of a line-end character).
Ideally, pointing to such a divergence would serve not only to aid learners in
correcting this specific problem, but also to initiate processing leading to more
general insights about the control of page layout via special formatting characters
(Carroll and Mack, 1985).

After its initial design, the Minimal Manual underwent subskill analysis and
testing. In some cases, this testing confirmed that the design principles had corrected
problems observed with other training manuals. So, for example, the emphasis on
procedural rather than conceptual material significantly reduced the problems learners
encountered in achieving the important subskill of getting to the typing area. This
activity requires traversing several menus, and can seem quite complex when
described within a conceptual framework; the Minimal Manual reduced this to a few
simple steps (in part by sheer deletion of conceptual material).

Importantly, though, the subskill testing also uncovered points at which the basic
procedural approach was not optimal. One such point was the assignment of a
document name, a fairly simple procedure, but one that appeared to confuse learners
conceptually. This problem was treated by the addition of two brief conceptual
sections. One developed a metaphor based on the practice of labelling physical office
file folders to introduce the requirement that data objects like documents have names;
the other developed a metaphor based on the practice of naming babies before they
are born to introduce the requirement that data objects must be named before they can
be used at all. This material, while it represented a departure from simple procedural
descriptions, filled an important need. Without the early qualitative testing, the need
may not have been discovered.

After the iterative design process, guided by subskill testing, the Minimal
Manual underwent criterial testing (Carroll, Smith-Kerker, Ford, and Mazur, 1985).
In one experiment, learners used one of five training methods (including two
variations of the Minimal Manual) for up to seven full working days. The Minimal
Manual proved to be substantially faster than the other manuals for the basic topic
areas it covered—and to produce learning achievement at least as good as the other
methods. The Minimal Manual only covered basic topics, where the commercial
manuals covered advanced topics as well. In a later phase of the experiment, Minimal
Manual learners were transferred to the advanced topics sections of a commercial
manual. Notably, they still were substantially faster, but in this comparison their
performance on learning achievement tests was better by a factor of eight. In sum,
this experiment provided evidence that the final Minimal Manual design was an order
of magnitude more effective than comparable state-of-the-art commercial manual
designs, and as such represents a successful application of an eclectic design process.

The paradox of the active user seriously constrains designs of computing
environments for people to use. We have presented an analysis of the paradox from
cognitive and motivational standpoints, and we have described a variety of
programmatic approaches to its resolution. Nevertheless, it is not our view that any
cookbook engineering solution is likely to develop and “solve” this problem tout
court.. Rather, we believe that this paradox inheres in human-computer interaction,
that it derives from fundamental properties of human behavior and experience, and
that addressing it through usability research and design will be an on-going project in
the forseeable future. The social and technological urgency of this project entails an
outstanding opportunity and challenge to cognitive science by placing it in a public

Paradox of the Active User 20

spotlight in which the power of its theory and methodolology will be assessed by the
absolute yardstick of practical efficacy.

References

Ausubel, D.P. 1960. The use of advance organizers in the learning and retention of
meaningful verbal material. Journal of Educational Psychology, 51, 267-272.

Bartlett, F.C. 1932. Remembering: An experimental and social study. Cambridge:
Cambridhe University Press.

Bayman, P. and Mayer, R.E. 1984. Instructional manipulation of users' mental
models for electronic calculators. International Journal of Man-Machine
Studies, 20, 189-199.

Berlyne, D. 1967. Structure and direction in human thinking. New York: John
Wiley.

Card, S.K., Moran, T.P., and Newell, A. 1980. The Keystroke-Level Model for user
performance time with interactive systems. Communications of the Association
for Computing Machinery, 23, 396-410.

Card, S.K., Moran, T.P., and Newell, A. 1983. The psychology of human-computer
interaction. Hillsdale, NJ: Erlbaum.

Carroll, J.M. 1982a. The adventure of getting to know a computer. IEEE Computer,
15/11, 49-58.

Carroll, J.M. 1982b. Learning, using and designing command paradigms. Human
Learning, 1, 31-62.

Carroll, J.M. 1983. Presentation and form in user interface architecture. Byte, 8/12,
113-122.

Carroll, J.M. 1984. Minimalist training. Datamation, 30/18, 125-136.

Carroll, J.M. and Carrithers, C. 1984. Training wheels in a user interface.
Communications of the Association for Computing Machinery, 27, 800-806.

Carroll, J.M. and Kay, D.S. 1985. Prompting, feedback and error correction in the
design of a scenario machine. CHI ‘85 Human Factors in Computing Systems
Proceedings. New York: ACM SIGCHI.

Carroll, J.M. and Mack, R.L. 1984. Learning to use a word processor: By doing, by
thinking, and by knowing. In J.C. Thomas and M. Schneider (Eds.) Human
factors in computer systems. Norwood: Ablex.

Carroll, J.M. and Mack, R.L. 1985. Metaphor, computing systems, and active
learning. International Journal of Man-Machine Studies, 22, 39-57.

Carroll, J.M., Mack, R.L., Lewis, C.H., Grischkowsky, N.L., and Robertson, S.R.
1985. Exploring exploring a word processor. Human Computer Interaction, 1,
283-307.

Carroll, J.M. and Mazur, S.A. 1985. Lisal.earning. IBM Research Report, RC
11427.

Carroll, J.M. and Rosson, M.B. 1985. Usability specifications as a tool in iterative
development. In H.R. Hartson (Ed.), Advances in human-computer interaction.
Norwood, NJ: Ablex.

Carroll, J.M., Smith-Kerker, P.L., Ford, J.R. and Mazur, S.A. 1985. The Minimal
Manual. IBM Research Report,

Carroll, J.M. and Thomas, J.C. 1982. Metaphor and the cognitive representation of
computing systems. IEEE Transactions on Systems, Man and Cybernetics, 12,
107-116.

Paradox of the Active User 21

Coombs, M. and Alty, J. 1984. Expert systems: An alternative paradigm.
International Journal of Man-Machine Studies, 20, 21-43.

Douglas, S.A. and Moran, T.P. 1983. Learning text editor semantics by analogy.
CHI'83 Human Factors in Computing Systems Proceedings. New York: ACM
SIGCHI.

Draper, S.W. 1984. The nature of expertise in UNIX. In B. Schackel (Ed.),
INTERACT’84: Proceedings of the first IFIPS conference on human-computer
interaction. Amsterdam: North Holland.

du Boulay, B., O'Shea, T. and Monk, J. 1981. The black box inside the glass box:
presenting computing concepts to novices. International Journal of Man-
Machine Studies, 14, 237-249.

Foss, D.A., Rosson, M.B., and Smith, P.L.. 1982. Reducing manual labor:
Experimental analysis of learning aids for a text-editor. Proceedings of
Conference on Human Factors of Computer Systems, Gaithersberg, MD:
National Bureau of Standards.

Furnas, G.W., Landauer, T.K., Gomez, L.M. and Dumais, S.T. 1984. Statistical
semantics: Analysis of the potential performance of keyword information
systems. In J.C. Thomas and M. Schneider (Eds.) Human factors in computer
systems. Norwood: Ablex.

Gomez, L.M. and Lochbaum, C.C. 1984. People can retrieve more objects with
enriched key-word vocabularies. But is there a human performance cost? In B.
Schackel (Ed.), INTERACT’84: Proceedings of the first IFIPS conference on
human-computer interaction. Amsterdam: North Holland.

Good, M.D., Whiteside, J.A., Wixon, D.R., and Jones, S.J. 1985. Building a user-
derived interface. Communications of the ACM,27, 1032-1043.

Gordon, R.F., Leeman, G.B., and Lewis, C.H. 1984. Concepts and implications of
interactive recovery. IBM Research Report, RC 10562.

Greene, D. and Lepper, M.R. (Eds.) 1979. The hidden costs of reward. Hillsdale,
NIJ: Erlbaum.

Halasz, F. and Moran, T. 1982. Analogy considered harmful. Proceedings of
Human Factors in Computer Systems Conference, National Bureau of
Standards, Gaithersburg, MD.

Jagodzinski, A.P. 1983. A theoretical basis for the representation of on-line
computer systems to naive users. International Journal of Man-Machine
Studies, 18, 215-252.

Kidd, J.R. 1977. How adults learn. New York: Association Press.

Knowles, M.S. 1973. The adult learner: A neglected species. Houston: Gulf
Publishing Company, American Society for Training and Development.

Mack, R.L. 1984. Understanding text-editing: Evidence from predictions and
descriptions given by computer-naive people. IBM Research Report, RC 10333.

Mack, R.L., Lewis, C. and Carroll, J.M. 1983. Learning to use office systems:
Problems and prospects. ACM Transactions in Office Information Systems, 1,
254-271.

Malone, T.W. 1981a. What makes computer games fun? Byte, 6/12, 258-277.

Malone, T.W. 1981b. Toward a theory of intrinsically motivating instruction.
Cognitive Science, 4, 333-369.

Mantei, M. and Haskell, N. 1983. Autobiography of a first-time discretionary
microcomputer user. CHI'83 Human Factors in Computing Systems
Proceedings. New York: ACM SIGCHI.

Paradox of the Active User 22

Mayer, R.E. 1976. Some conditions of meaningful learning for computer
programming: Advance organizers and subject control of frame order. Journal
of Educational Psychology, 67, 725-734.

Mayer, R.E. and Bayman, P. 1981. Psychology of calculator languages: A
framework for describing differences in users' knowledge. Communications of
the Association for Computing Machinery, 24, 511-520.

McKendree, J.E., Schorno, S.S., and Carroll, J.M. 1985. Personal Planner: The
Scenario Machine as a Research Tool. Videotape demonstration, CHI’85
Human Factors in Computing Systems Proceedings. New York: ACM SIGCHI
(short version distributed by SIGGRAPH).

Moran, T.P. 1981. Command language grammar. International Journal of Man-
Machine Studies, 15, 3-50.

Nielsen, J., Mack, R.L., Bergendorff, K., and Grischkowsky, N.L. 1986. Integrated
software usage in the professional work environment: evidence from
questionnaires and interviews. CHI’86 Human Factors in Computing Systems
Proceedings. New York: ACM SIGCHI.

Norman, D.A. 1983a. Some observations on mental models. In D. Gentner and
A.L. Stevens (Eds.), Mental models. Hillsdale, NJ: Erlbaum.

Norman, D.A. 1983b. Design principles for human-computer interfaces. CHI’83
Human Factors in Computing Systems Proceedings. New York: ACM
SIGCHI.

O'Malley, C., Smolensky, P., Bannon, L., Conway, E., Graham, J., Sokolov, J., and
Monty, M. 1983. A proposal for user centered system documentation. CHI’83

Human Factors in Computing Systems Proceedings. New York: ACM
SIGCHI.

Piaget, J. 1954. The construction of reality in the child. New York: Basic Books.

Piattelli-Palmarini, M. 1980. Language and learning. Cambridge: Harvard
University Press.

Pirolli, P.L., Anderson, J.R. and Farrell, R. 1984. Learning to program recursion.
Proceedings of the Sixth Annual Conference of the Cognitive Science Society,
Boulder, CO.

Pope, B. 1985. A study of where users spend their time using VM/CMS. IBM
Research Report, RC 10953.

Reisner, P. 1984. Formal grammar as a tool for analyzing ease of use: Some
fundamental concepts. In J. Thomas and M. Schneider (Eds.) Human factors in
computing systems. Norwood, NJ: Ablex.

Rosson, M.B. 1983. Patterns of experience in text editing. CHI'83 Human Factors
in Computing Systems Proceedings. New York: ACM SIGCHI.

Rosson, M.B. 1984a. The role of experience in editing. In B. Schackel (Ed.),
INTERACT'84: Proceedings of the first IFIPS conference on human-computer
interaction. Amsterdam: North Holland.

Rosson, M.B. 1984b. Effects of experience on learning, using, and evaluating a text-
editor. Human Factors, 26, 463-475.

Rosson, M.B., Gould, J.D., and Grischkowsky, N. 1983. Field observations of IBM
Displaywriter use. Unpublished research, IBM Watson Research Center.

Scandura, A.M., Lowerre, G.F., Veneski, J., and Scandura, J.M. 1976. Using
electronic calculators with elementary children. Educational Technology, 16, 14-
18.

Paradox of the Active User 23

Scribner, S. (Ed.) 1984. Cognitive studies of work. Quarterly Newsletter of the
Laboratory of Comparative Human Cognition, 6, Numbers 1 and 2.

Shneiderman, B. 1983. Direct manipulation: A step beyond programming languages.
IEEE Computer, 16(8), 57-69.

Shrager, J. and Finin, T. 1982. An expert system that volunteers advices.
Proceedings of the National Conference on Artificial Intelligence, Pittsburgh:
Carnegie-Mellon University, 339-340.

Singley, M.K. and Anderson, J.R. 1985. The transfer of text-editing skill.
International Journal of Man-Machine Studies, 22, 403-423.

Smith, D., Irby, C., Kimbal, R., Verplank, B., and Harslem, E. 1982. Designing the
Star user interface. Byte, 7/4, 242-282.

Thomas, J.C. and Carroll, J.M. 1979. The psychological study of design. Design
Studies, 1/1, 5-11.

Unde6rwood, B.J. 1957. Interference and forgetting. Psychological Review, 64, 49-

0.
Weiner, B. 1980. Human motivation. Chicago: Rand McNally.
Whiteside, J. and Wixon, D. 1985. Developmental theory as a framework for

studying human-computer interaction. In H.R. Hartson (Ed.), Advances in
human-computer interaction. Norwood, NJ: Ablex.

Young, R. 1981. The machine inside the machine: Users’ models of pocket
calculators. International Journal of Man-Machine Studies, 15, 51-85.

