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Locally weighted projection regression (LWPR) is a new algorithm for in-
cremental nonlinear function approximation in high-dimensional spaces
with redundant and irrelevant input dimensions. At its core, it employs
nonparametric regression with locally linear models. In order to stay
computationally efficient and numerically robust, each local model per-
forms the regression analysis with a small number of univariate regres-
sions in selected directions in input space in the spirit of partial least
squares regression. We discuss when and how local learning techniques
can successfully work in high-dimensional spaces and review the various
techniques for local dimensionality reduction before finally deriving the
LWPR algorithm. The properties of LWPR are that it (1) learns rapidly
with second-order learning methods based on incremental training,
(2) uses statistically sound stochastic leave-one-out cross validation for
learning without the need to memorize training data, (3) adjusts its
weighting kernels based on only local information in order to minimize
the danger of negative interference of incremental learning, (4) has a com-
putational complexity that is linear in the number of inputs, and (5) can
deal with a large number of—possibly redundant—inputs, as shown in
various empirical evaluations with up to 90 dimensional data sets. For
a probabilistic interpretation, predictive variance and confidence inter-
vals are derived. To our knowledge, LWPR is the first truly incremental
spatially localized learning method that can successfully and efficiently
operate in very high-dimensional spaces.
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1 Introduction

Despite the recent progress in statistical learning, nonlinear function ap-
proximation with high-dimensional input data remains a nontrivial prob-
lem, especially in incremental and real-time formulations. There is, however,
an increasing number of problem domains where both of these properties
are important. Examples include the online modeling of dynamic processes
observed by visual surveillance, user modeling for advanced computer in-
terfaces and game playing, and the learning of value functions, policies, and
models for learning control, particularly in the context of high-dimensional
movement systems like humans or humanoid robots. An ideal algorithm for
such tasks needs to avoid potential numerical problems from redundancy
in the input data, eliminate irrelevant input dimensions, keep the compu-
tational complexity of learning updates low while remaining data efficient,
allow online incremental learning, and, of course, achieve accurate function
approximation and adequate generalization.

When looking for a learning framework to address these goals, one can
identify two broad classes of function approximation methods: (1) methods
that fit nonlinear functions globally, typically by input space expansions
with predefined or parameterized basis functions and subsequent linear
combinations of the expanded inputs; and (2) methods that fit nonlinear
functions locally, usually by using spatially localized simple (e.g., low-
order polynomial) models in the original input space and automatically
adjusting the complexity (e.g., number of local models and their locality)
to accurately account for the nonlinearities and distributions of the target
function. Interestingly, the current trends in statistical learning have con-
centrated on methods that fall primarily in the first class of global nonlinear
function approximators, for example, gaussian process regression (GPR;
Williams & Rasmussen, 1996), support vector machine regression (SVMR;
Smola & Schölkopf, 1998), and variational Bayes for mixture models (VBM;
Ghahramani & Beal, 2000).1 In spite of the solid theoretical foundations that
these approaches possess in terms of generalization and convergence, they
are not necessarily the most suitable for online learning in high-dimensional
spaces. First, they require an a priori determination of the right modeling
biases. For instance, in the case of GPR and SVMR, these biases involve
selecting the right function space in terms of the choice of basis or kernel
functions (Vijayakumar & Ogawa, 1999), and in VBM the biases are con-
cerned with the right number of latent variables and proper initialization.2

Second, all of these recent function approximator methods were developed

1 Mixture models are actually in between global and local function approximators since
they use local model fitting but employ a global optimization criterion.

2 It must be noted that some recent work (Schölkopf, Burgess, & Smola, 1999) has
started to look at model selection for SVMs and GPRs and automatic determination of
number of latent models for VBM (Ghahramani & Beal, 2000).
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primarily for batch data analysis and are not easily or efficiently adjusted
for incrementally arriving data. For instance, in SVMR, adding a new data
point can drastically change the outcome of the global optimization prob-
lem in terms of which data points actually become support vectors, such
that all (or a carefully selected subset of) data have to be kept in memory for
reevaluation. Thus, adding a new data point in SVMR is computationally
rather expensive, a property that is also shared by GPR. VBM suffers from
similar problems due to the need for storing and reevaluating data when
adding new mixture components (Ueda, Nakano, Ghahramani, & Hinton,
2000). In general, it seems that most suggested Bayesian learning algorithms
are computationally too expensive for real-time learning because they tend
to represent the complete joint distribution of the data, albeit as a condi-
tionally independent factored representation. As a last point, incremental
approximation of functions with global methods is prone to lead to nega-
tive interference when input distributions change (Schaal & Atkeson, 1998).
Such changes are, however, typical in many online learning tasks.

In contrast to the global learning methods described above, function
approximation with spatially localized models is rather well suited for in-
cremental and real-time learning, particularly in the framework of locally
weighted learning (LWL; Atkeson, Moore, & Schaal, 1997). LWL methods
are very useful when there is limited knowledge about the model complex-
ity such that the model resources can be increased in a purely incremen-
tal and data-driven fashion, as demonstrated in previous work (Schaal &
Atkeson, 1998). However, since these techniques allocate resources to cover
the input space in a localized fashion, in general, with an increasing number
of input dimensions, they encounter an exponential explosion in the num-
ber of local models required for accurate approximation—often referred
to as the “curse of dimensionality” (Scott, 1992). Hence, at the outset, high-
dimensional function approximation seems to be computationally infeasible
for spatially localized learning.

Some efficient global learning methods with automatic resource alloca-
tion in high-dimensional spaces, however, have been employed success-
fully by using techniques of projection regression (PR). PR copes with
high-dimensional inputs by decomposing multivariate regressions into a
superposition of single-variate regressions along a few selected projections
in input space. The major difficulty of PR lies in the selection of efficient pro-
jections, that is, how to achieve the best-fitting result with as few univariate
regressions as possible. Among the best-known PR algorithms are projection
pursuit regression (Friedman & Stutzle, 1981) and its generalization in the
form of generalized additive models (Hastie & Tibshirani, 1990). Sigmoidal
neural networks can equally be conceived of as a method of projection re-
gression, in particular when new projections are added sequentially, as in
cascade correlation (Fahlman & Lebiere, 1990).

In this letter, we suggest a method of extending the beneficial properties
of spatially localized learning to high-dimensional function approximation
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problems. The prerequisite of our approach is that the high-dimensional
learning problems we address have locally low-dimensional distributions,
an assumption that holds for a large class of real-world data (Tenenbaum,
de Silva, & Langford, 2000; Roweis & Saul, 2000; Vlassis, Motomura, &
Krose, 2002; D’Souza, Vijayakumar, & Schaal, 2001). If distributions are lo-
cally low dimensional, the allocation of local models can be restricted to
these thin distributions, and only a tiny part of the entire high-dimensional
space needs to be filled with local models. Thus, the curse of dimension-
ality of spatially localized model fitting can be avoided. Under these cir-
cumstances, an alternative method of projection regression can be derived,
focusing on finding efficient local projections. Local projections can be used
to accomplish local function approximation in the neighborhood of a given
query point with traditional LWL approaches, thus inheriting most of the
statistical properties from well-established methods (Hastie & Loader, 1993;
Atkeson et al. 1997). As this letter will demonstrate, the resulting learning
algorithm combines the fast, efficient, and incremental capabilities of LWL
techniques while alleviating the problems faced due to high-dimensional
input domains through local projections.

In the following sections, we first review approaches of how to find good
local projections by looking into various schemes for performing dimension-
ality reduction for regression, including principal component regression,
factor analysis, and partial least squares regression. Afterward, we embed
the most efficient and robust of these projection algorithms in an incremen-
tal nonlinear function approximator (Vijayakumar & Schaal, 1998) capable
of automatically adjusting the model complexity in a purely data-driven
fashion. In several evaluations, on both synthetic and real-world data, the
resulting incremental learning system demonstrates high accuracy for func-
tion fitting in very high-dimensional spaces, robustness toward irrelevant
and redundant inputs, as well as low computational complexity. Compar-
isons will prove the competitiveness with other state-of-the-art learning
systems.

2 Local Dimensionality Reduction for Locally Weighted Learning

Assuming that data are characterized by locally low-dimensional distribu-
tions, efficient algorithms are needed to exploit this property. We will focus
on locally weighted learning (LWL) methods (Atkeson et al., 1997) because
they allow us to adapt a variety of linear dimensionality-reduction tech-
niques for the purpose of nonlinear function approximation (see section
3) and because they are easily modified for incremental learning. LWL-
related methods have also found widespread application in mixture mod-
els (Jordan & Jacobs, 1994; Xu, Jordan, & Hinton, 1995; Ghahramani &
Beal, 2000) such that the results of this section can contribute to this field
too.



2606 S. Vijayakumar, A. D’Souza, and S. Schaal

The learning problems considered here assume the standard regression
model:

y = f (x) + ε,

where x denotes the N-dimensional input vector, y the (for simplicity) scalar
output, and ε a mean-zero random noise term. When only a local subset of
data in the vicinity of a point xc is considered and the locality is chosen
appropriately, a low-order polynomial can be employed to model this local
subset. Due to a favorable compromise between computational complexity
and quality of function approximation (Hastie & Loader, 1993), we choose
linear models

y = βT x + ε. (2.1)

A measure of locality for each data point, the weight wi , is computed from
a gaussian kernel,

wi = exp(−0.5(xi − xc)T D(xi − xc)), and W ≡ diag{w1, . . . , wM}, (2.2)

where D is a positive semidefinite distance metric that determines the size
and shape of the neighborhood contributing to the local model (Atkeson
et al., 1997). The weights wi will enter all following algorithms to ensure
spatial localization in input space. Without loss of generality, we assume
zero mean of all inputs and outputs in our algorithms, which is ensured by
subtracting the weighted mean x or y from the data, where

x =
M∑

i=1

wi xi

/ M∑
i=1

wi , and y =
M∑

i=1

wi yi

/ M∑
i=1

wi , (2.3)

and M denotes the number of data points. The input data are summarized in
the rows of the matrix X = [x1 x2, . . . , xM]T , the corresponding outputs are
the coefficients of the vector y, and the corresponding weights, determined
from equation 2.2, are in the diagonal matrix W.

As candidate algorithms for local dimensionality reduction, we consider
two techniques, factor analysis and partial least squares regression. Fac-
tor analysis (Everitt, 1984) is a density estimation technique that assumes
that the observed data were generated from a lower-dimensional process,
characterized by k latent or hidden variables v that are all independently
distributed with mean zero and unit variance. The observed variables are
generated from the latent variables through the transformation matrix U
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and additive mean zero independent noise ε with diagonal covariance ma-
trix Ω:

z = Uv + ε, (2.4)

where E{εεT } = Ω and E denotes the expectation operator. If both v and ε
are normally distributed, the parametersΩ and U can be obtained iteratively
by the expectation-maximization algorithm (EM) (Rubin & Thayer, 1982).

Factor analysis is superset for several dimensionality-reduction algo-
rithms. For z = x and E{εεT } = σ 2I, we obtain principal component anal-
ysis in input space (Tipping & Bishop, 1999). For the purpose of regres-
sion, the lower-dimensional representation v would serve as a new input
to the regression problem—an algorithm called principal component re-
gression (PCR). However, it is well documented that PCR has the huge
danger of eliminating low-variance input dimensions that are nevertheless
crucial for the regression problem, thus leading to inferior function approx-
imation results (Frank & Friedman, 1993; Schaal, Vijayakumar, & Atkeson,
1998).

Thus, for the purpose of regression, it is more useful to use factor analysis
in joint space of input and output data:

z =
[

x
y

]
, ε =

[
εx

εy

]
, E{εεT } = Ω. (2.5)

Again, if we assume E{εεT } = σ 2I, we obtain the PCA solution, this time per-
formed in joint space. PCA algorithms are appealing, as they can be solved
rather efficiently. Alternatively, without additional constraints on Ω (except
that it is diagonal), the most powerful factor analysis algorithm for dimen-
sionality reduction is obtained and requires an iterative EM solution. In
both joint-space formulations, the regression parametersβ (cf. equation 2.1)
can be recovered by computing the expectation of p(y|x), which is obtained
from standard manipulations of the normally distributed joint distribution
p(x, v, y) (Schaal et al., 1998). While empirical evaluation in Schaal et al.
(1998) verified that the unconstrained (i.e., non-PCA) version of joint-space
factor analysis performs very well for regression, it also highlighted an im-
portant problem. As a density estimation method, factor analysis crucially
depends on representing the complete latent space v of the joint input vector
z; otherwise, performance degrades severely. Hence, even if there are input
dimensions that are irrelevant for the regression, they need to be represented
in the latent variable vector unless they are redundant with combinations
of other inputs. This property is problematic for our goals, as we expect a
large number of irrelevant inputs in high-dimensional learning problems.
The inferior performance of factor analysis when the latent space is under-
estimated also makes it hard to apply it in constructive algorithms—those
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Table 1: Locally Weighted Implementation of Partial Least Squares Regression.

1. Initialize: Xres = X, yres = y

2. Repeat for r = 1 to R (No. of projections)
(a) ur = XT

resWyres where W ≡ diag{w1, . . . , wM} is the matrix of locality weights.
(b) βr = zT

r Wyres/(zT
r Wzr ) where zr = Xresur .

(c) yres = yres − zr βr .
(d) Xres = Xres − zr pr

T where pr = XT
resWzr /(zT

r Wzr ).

that grow the latent space in a data-driven way until the full latent space is
recovered. Since the regression results are of low quality until the full latent
space is recovered, predictions of the learning system cannot be trusted until
a significant amount of data has been encountered, with the open problem
of how to quantify “significant.”

As a surprising result of the empirical comparisons of local
dimensionality-reduction techniques presented in Schaal et al. (1998), one
particular algorithm, partial least squares regression (PLS) (Wold, 1975;
Frank & Friedman, 1993), achieved equally good and more robust results
than factor analysis for regression without any of the noted problems. PLS, a
technique extensively used in chemometrics, recursively computes orthog-
onal projections of the input data and performs single-variable regressions
along these projections on the residuals of the previous iteration step. Table 1
provides an outline of the PLS algorithm, derived here for implementing the
locally weighted version (LWPLS). The key ingredient in PLS is to use the
direction of maximal correlation between the residual error and the input
data as the projection direction at every regression step. Additionally, PLS
regresses the inputs of the previous step against the projected inputs z in
order to ensure the orthogonality of all the projections u (step 2d). Actually,
this additional regression could be avoided by replacing p with u in Step 2d,
similar to techniques used in principal component analysis (Sanger, 1989).
However, using this regression step leads to better performance of the al-
gorithm as PLS chooses the most effective projections if the input data have
a spherical distribution: in the spherical case, with only one projection, PLS
will find the direction of the gradient and achieve optimal regression results.
The regression step in 2d chooses the reduced input data Xres such that the
resulting data vectors have minimal norms and, hence, push the distribu-
tion of Xres to become more spherical. An additional consequence of step 2d
is that all the projections zr become uncorrelated, that is, zT

j zr = 0 ∀ j �= r , a
property that will be important in the derivations below.

Due to all these consideration, we will choose PLS as the basis for an
incremental nonlinear function approximator, which, in the next sections,
will be demonstrated to have appealing properties for nontrivial function
fitting problems.
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3 Locally Weighted Projection Regression

For nonlinear function approximation, the core concept of our learning
system, locally weighted projection regression (LWPR), is to find approxi-
mations by means of piecewise linear models (Atkeson et al., 1997). Learning
involves automatically determining the appropriate number of local models
K , the parameters βk of the hyperplane in each model, and also the region
of validity, called receptive field (RF), parameterized as a distance metric
Dk in a gaussian kernel (cf. equation 2.2):

wk = exp
(

−1
2

(x − ck)T Dk(x − ck)
)

. (3.1)

Given a query point x, every linear model calculates a prediction ŷk(x). The
total output of the learning system is the normalized weighted mean of all
K linear models,

ŷ =
K∑

k=1

wk ŷk

/ K∑
k=1

wk, (3.2)

also illustrated in Figure 1. The centers ck of the RFs remain fixed in order
to minimize negative interference during incremental learning that could
occur due to changing input distributions (Schaal & Atkeson, 1998). Local
models are created on an as-needed basis as described in section 3.2. Table 2
provides a reference list of indices and symbols that are used consistently
across the description of the LWPR algorithm.

3.1 Learning with LWPR. Despite its appealing simplicity, the piece-
wise linear modeling approach becomes numerically brittle and compu-
tationally too expensive in high-dimensional input spaces when using or-
dinary linear regression to determine the local model parameters (Schaal
& Atkeson, 1998). Thus, we will use locally weighted partial least squares
regression within each local model to fit the hyperplane. As a significant
computational advantage, we expect that far fewer projections than the ac-
tual number of input dimensions are needed for accurate learning. The next
sections describe the necessary modifications of PLS for this implementa-
tion, embed the local regression into the LWL framework, explain a method
of automatic distance metric adaptation, and finish with a complete nonlin-
ear learning scheme, called locally weighted projection regression (LWPR).

3.1.1 Incremental Computation of Projections and Local Regression. For incre-
mental learning, that is, a scheme that does not explicitly store any training
data, the sufficient statistics of the learning algorithm need to be accumu-
lated in appropriate variables. Table 3 provides suitable incremental update
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Figure 1: Information processing unit of LWPR.

rules. The variables azz,r , azres,r, and axz,r are sufficient statistics that enable
us to perform the univariate regressions in step 2c.1.2 and step 2c.2.2, similar
to recursive least squares, that is, a fast Newton-like incremental learning
technique. λ ∈ [0, 1] denotes a forgetting factor that allows exponential for-
getting of older data in the sufficient statistics. Forgetting is necessary in
incremental learning since a change of some learning parameters will affect
a change in the sufficient statistics. Such forgetting factors are a standard
technique in recursive system identification (Ljung & Soderstrom, 1986).
It can be shown that the prediction error of step 2b corresponds to the
leave-one-out cross-validation error of the current point after the regression
parameters were updated with the data point. Hence, it is denoted by ecv.

In Table 3, for R = N, that is, the same number of projections as the input
dimensionality, the entire input space would be spanned by the projections
ur and the regression results would be identical to that of ordinary linear
regression (Wold, 1975). However, once again, we emphasize the important
properties of the local projection scheme. First, if all the input variables are
statistically independent and have equal variance,3 PLS will find the optimal

3 It should be noted that we could insert one more preprocessing step in Table 3 that
independently scales all inputs to unit variance. Empirically, however, we did not notice
a significant improvement of the algorithm, so we omit this step for simplicity.
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Table 2: Legend of Indexes and Symbols Used for LWPR.

Notation Affectation

M Number of training data points
N Input dimensionality (i.e., dim. of x)
k = (1 : K ) Number of local models
r = (1 : R) Number of local projections used by PLS
{xi , yi }M

i=1 Training data
{zi }M

i=1 Lower-dimensional projection of input data xi (by PLS)
{zi,r }R

r=1 Elements of projected input zi
ur r th projection direction, i.e., zi,r = xT

i ur
pr Regressed input space to be subtracted to maintain

orthogonality of projection directions
X, Z Batch representations of input and projected data
w Activation of data (x, y) on a local model centered at c
W Weight matrix W ≡ diag{w1, . . . , wM} representing

the activation due to all M data points
Wn Sum of weights w seen by the local model after n data points
βr r th component of slope of the local linear model β ≡ [β1 · · ·βR]T

an
var,r Sufficient statistics for incremental computation of

r th dimension of variable var after seeing n data points.

projection direction ur in roughly a single sweep through the training data.
The optimal projection direction corresponds to the gradient of the local lin-
earization parameters of the function to be approximated. Second, choosing
the projection direction from correlating the input and the output data in
step 2b.1 automatically excludes irrelevant input dimensions. And third,
there is no danger of numerical problems due to redundant input dimen-
sions as the univariate regressions can easily be prevented from becoming
singular.

3.1.2 Adjusting the Shape and Size of Receptive Field. The distance metric D
and, hence, the locality of the receptive fields, can be learned for each local
model individually by stochastic gradient descent in a penalized leave-one-
out cross-validation cost function (Schaal & Atkeson, 1998),

J = 1∑M
i=1 wi

M∑
i=1

wi (yi − ŷi,−i )2 + γ

N

N∑
i, j=1

D2
ij, (3.3)

where M denotes the number of data points in the training set. The first
term of the cost function is the mean leave-one-out cross-validation error
of the local model (indicated by the subscript i, −i) which ensures proper
generalization (Schaal & Atkeson, 1998). The second term, the penalty term,
makes sure that receptive fields cannot shrink indefinitely in case of large
amounts of training data. Such shrinkage would be statistically correct for
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Table 3: Incremental Locally Weighted PLS for One RF Centered at c.

1. Initialization: (# data points seen n = 0)
x0

0 = 0, β0
0 = 0, W0 = 0, u0

r = 0, p0
r = 0; r = 1 : R

2. Incorporating new data: Given training point (x, y)
2a. Compute activation and update the means

1. w = exp(− 1
2 (x − c)T D(x − c)); Wn+1 = λWn + w

2. xn+1
0 = (λWnxn

0 + wx)/Wn+1; βn+1
0 = (λWnβn

0 + wy)/Wn+1

2b. Compute the current prediction error

xres,1 = x − xn+1
0 , ŷ = βn+1

0
Repeat for r = 1 : R (# projections)

1. zr = xT
res,run

r /

√
un

r
T un

r

2. ŷ ← ŷ + βn
r zr

3. xres,r+1 = xres,r − zr pn
r

4. MSEn+1
r = λMSEn

r + w (y − ŷ)2

ecv = y − ŷ
2c. Update the local model

res1 = y − βn+1
0

For r = 1 : R (# projections)
2c.1 Update the local regression and compute residuals

1. an+1
zz,r = λ an

zz,r + w z2
r ; an+1

zres,r = λ an
zres,r + w zr resr

2. βn+1
r = an+1

zres,r/an+1
zz,r

3. resr+1 = resr − zr β
n+1
r

4. an+1
xz,r = λ an

xz,r + wxres,rzr

2c.2 Update the projection directions
1. un+1

r = λ un
r + wxres,r resr

2. pn+1
r = an+1

xz,r /an+1
zz,r

e = resr+1

3. Predicting with novel data (xq ): Initialize: yq = β0, xq = xq − x0

Repeat for r = 1 : R
• yq ← yq + βr sr where sr = uT

r xq

• xq ← xq − sr pn
r

Note: The subscript k referring to the kth local model is omitted throughout
this table since we are referring to updates in one local model or RF.

asymptotically unbiased function approximation, but it would require
maintaining an ever increasing number of local models in the learning sys-
tem, which is computationally too expensive. The trade-off parameter γ can
be determined either empirically or from assessments of the maximal local
curvature of the function to be approximated (Schaal & Atkeson, 1997); in
general, results are not very sensitive to this parameter (Schaal & Atkeson,
1998), as it primarily affects resource efficiency—when input and output
data are preprocessed to have unit variance, γ can be kept constant, for ex-
ample, at γ = 1e − 7 as in all our experiments. It should be noted that due to
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the local cost function in equation 3.3, learning becomes entirely localized
too; no parameters from other local models are needed for updates as, for in-
stance, in competitive learning with mixture models. Moreover, minimizing
equation 3.3 can be accomplished in an incremental way without keeping
data in memory (Schaal & Atkeson, 1998). This property is due to a reformu-
lation of the leave-one-out cross-validation error as the PRESS residual error
(Belsley, Kuh, & Welsch, 1980). As detailed in Schaal and Atkeson (1998) the
bias-variance trade-off is thus resolved for every local model individually
such that an increasing number of local models will not lead to overfitting.
Indeed, it leads to better approximation results due to model averaging (see
equation 3.2) in the sense of committee machines (Perrone & Cooper, 1993).

In ordinary weighted linear regression, expanding equation 3.3 with the
PRESS residual error results in

J = 1∑M
i=1 wi

M∑
i=1

wi (yi − ŷi )2(
1 − wi xT

i Pxi
)2 + γ

N

N∑
i, j=1

D2
ij, (3.4)

where P corresponds to the inverted weighted covariance matrix of the input
data. Interestingly, we found that the PRESS residuals of equation 3.4 can be
exactly formulated in terms of the PLS projected inputs zi ≡ [zi,1 . . . zi,R]T

(cf. Table 3) as

J = 1∑M
i=1 wi

M∑
i=1

wi (yi − ŷi )2(
1 − wi zT

i Pzzi
)2 + γ

N

N∑
i, j=1

D2
ij

≡ 1∑M
i=1 wi

M∑
i=1

J1 + γ

N
J2, (3.5)

where Pz corresponds to the inverse covariance matrix computed from the
projected inputs zi for R = N, that is, the zi ’s spans the same full-rank
input space4 as xi ’s in equation 3.4 (cf. the proof in appendix A). It can also
been proved, as explained in appendix A, that Pz is diagonal, which greatly
contributes to the computational efficiency of our update rules. Based on this
cost function, the distance metric in LWPR is learned by gradient descent,

Mn+1 = Mn − α
∂ J
∂M

where D = MT M (for positive definiteness) (3.6)

where M is an upper triangular matrix resulting from a Cholesky decom-
position of D. Following Schaal and Atkeson (1998), a stochastic approxi-
mation of the gradient ∂ J

∂M of equation 3.5 can be derived by keeping track

4 For rank-deficient input spaces, the equivalence of equations 3.4 and 3.5 holds in the
subspace spanned by X.
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Table 4: Derivatives for Distance Metric Update.

For the current data point x, its PLS projection z and activation w:

∂ J
∂M

≈
(

M∑
i=1

∂ J1

∂w

)
∂w
∂M

+ w
Wn+1

∂ J2

∂M
(stochastic update of equation 3.5)

∂w
∂ Mkl

= − 1
2

w(x − c)T ∂D
∂ Mkl

(x − c); ∂ J2

∂ Mkl
= 2

γ

N

N∑
i, j=1

Di j
∂ Di j

∂ Mkl
∂ Di j
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
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1
...
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k


 ,
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H + w ecvz
(1 − h)

; an+1
G = λan

G + w2e2
cvz2

(1 − h)
where h = wzT q

an+1
E = λan

E + we2
cv

Note: Refer to Table 3 for some of the variables.

of several sufficient statistics, as shown in Table 4. It should be noted that
in these update laws, we treated the PLS projection direction, and hence, z,
as if it were independent of the distance metric, such that chain rules need
not be taken throughout the entire PLS recursions. Empirically, this simpli-
fication did not seem to have any negative impact and reduced the update
rules significantly.

3.2 The Complete LWPR Algorithm. All update rules can be com-
bined in an incremental learning scheme that automatically allocates new
locally linear models as needed. The concept of the final learning network is
illustrated in Figure 1, and an outline of the final LWPR algorithm is shown
in Table 5.

In this pseudocode, wgen is a threshold that determines when to create
a new receptive field, as discussed in Schaal and Atkeson (1998). wgen is a
computational efficiency parameter and not a complexity parameter as in
mixture models. The closer wgen is set to 1, the more overlap local models
will have, which is beneficial in the spirit of committee machines (cf. Schaal
& Atkeson, 1998; Perrone & Cooper 1993) but more costly to compute. In
general, the more overlap is permitted, the better the function-fitting results,
without any danger that the increase in overlap can lead to overfitting.
Ddef is the initial (usually diagonal) distance metric in equation 3.1. The
initial number of projections is set to R = 2. The algorithm has a simple
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Table 5: Pseudocode of the Complete LWPR Algorithm.

• Initialize the LWPR with no receptive field (RF).
• For every new training sample (x,y):

– For k = 1 to K (number of receptive fields):
∗ Calculate the activation from equation 3.1
∗ Update projections and regression (see Table 3) and distance metric (see Table 4)
∗ Check if number of projections needs to be increased (cf. section 3.2)

– If no RF was activated by more than wgen;
∗ Create a new RF with R = 2, c = x, D = Ddef

mechanism of determining whether R should be increased by recursively
keeping track of the mean-squared error (MSE) as a function of the number
of projections included in a local model—step 2b.4 in Table 3. If the MSE at
the next projection does not decrease more than a certain percentage of the
previous MSE, MSEr+1

MSEr
> φ, where φ ∈ [0, 1], the algorithm will stop adding

new projections locally. As MSEr can be interpreted as an approximation
of the leave-one-out cross-validation error of each projection, this threshold
criterion avoids problems due to overfitting. Due to the need to compare
the MSE of two successive projections, LWPR needs to be initialized with
at least two projection dimensions. A comparison of these mechanisms of
constructive learning with previous algorithms in the literature (e.g, Platt,
1991) can be found in Schaal and Atkeson (1998).

3.2.1 Speed-Up for Learning from Trajectories. If in incremental learning,
training data are generated from trajectories (i.e., data are temporally cor-
related), it is possible to accelerate lookup and training times by taking ad-
vantage of the fact that two consecutively arriving training points are close
neighbors in input space. For such cases, we added a special data structure
to LWPR that allows restricting updates and lookups to only a small fraction
of local models instead of exhaustively sweeping through all of them. For
this purpose, each local model maintains a list of all other local models that
overlap sufficiently with it. Sufficient overlap between two models i and j
can be determined from the centers and distance metrics. The point x in input
space that is the closest to both centers in the sense of a Mahalanobis dis-
tance is x = (Di + D j )−1(Di ci + D j c j ). Inserting this point into equation 3.1
of one of the local models gives the activation w due to this point. The two
local models are listed as sufficiently overlapping if w ≥ wgen (cf. Table 5).
For diagonal distance metrics, the overlap computation is linear in the num-
ber of inputs. Whenever a new data point is added to LWPR, one neigh-
borhood relation is checked for the maximally activated RF. An appropriate
counter for each local model ensures that overlap with all other local models
is checked exhaustively. Given this nearest-neighbor data structure, lookup
and learning can be confined to only a few RFs. For every lookup (up-
date), the identification number of the maximally activated RF is returned.
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The next lookup (update) will consider only the neighbors of this RF. It
can be shown that this method is as good as an exhaustive lookup (up-
date) strategy that excludes RFs that are activated below a certain threshold
wcutoff.

3.2.2 Pruning of Local Models. As in the RFWR algorithm (Schaal &
Atkeson, 1998), it is possible to prune local models depending on the level
of overlap between two local models or the accumulated locally weighted
mean-squared error. The pruning strategy is virtually identical to that in
(Schaal & Atkeson, 1998, sec. 3.14). However, due to the numerical robust-
ness of PLS, we have noticed that the need for pruning or merging is almost
nonexistent in the LWPR implementation, such that we do not expand on
this possible feature of the algorithm.

3.2.3 Computational Complexity. For a diagonal distance metric D and
under the assumption that the number of projections R remains small and
bounded, the computational complexity of one incremental update of all
parameters of LWPR is linear in the number of input dimensions N. To
the best of our knowledge, this property makes LWPR one of the com-
putationally most efficient algorithms that have been suggested for high-
dimensional function approximation. This low-computational complexity
sets LWPR apart from our earlier work on the RFWR algorithm (Schaal &
Atkeson, 1998), which was cubic in the number of input dimensions. We
thus accomplished one of our main goals: maintaining the appealing func-
tion approximation properties of RFWR while eliminating its problems in
high-dimensional learning problems.

3.2.4 Confidence Intervals. Under the classical probabilistic interpretation
of weighted least squares (Gelman, Carlin, Stern, & Rubin, 1995), that each
local model’s conditional distribution is normal with heteroscedastic vari-
ances p(y|x; wk) ∼ N(zk

Tβk, sk
2/wk), it is possible to derive the predictive

variances σ 2
pred,k for a new query point xq for each local model in LWPR.5

The derivation of this measure is in analogy with ordinary linear regres-
sion (Schaal & Atkeson, 1994; Myers, 1990) and is also consistent with the
Bayesian formulation of predictive variances (Gelman et al., 1995). For each
individual local model, σ 2

pred,k can be estimated as (refer to Tables 4 and 3 for
variable definitions):

σ 2
pred,k = s2

k

(
1 + wkzT

q ,kqk
)
, (3.7)

5 Note that wk is used here as an abbreviated version of w{q ,k}—the weight contribution
due to query point q in model k—for simplicity.
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where zq ,k is the projected query point xq under the kth local model, and

sk
2 ≈MSEn=M

k,R

/
(M′

k − p′
k); M′

k ≡
M∑

i=1

wk,i ≈ Wk
n=M

p′
k ≡

M∑
i=1

w2
k,i z

T
k,i qk,i ≈ an=M

p′
k

with incremental update of

an+1
p′

k
= λan

p′
k
+ wk

2zk
T qk .

The definition of M′ in terms of the sum of weights reflects the effective
number of data points entering the computation of the local variance sk

2

(Schaal & Atkeson, 1994) after an update of M training points has been per-
formed. The definition of p′, also referred to as the local degrees of freedom,
is analogous to the global degrees of freedom of linear smoothers (Hastie &
Tibshirani, 1990; Schaal & Atkeson, 1994).

In order to obtain a predictive variance measure for the averaging for-
mula (equation 3.2), one could just compute the weighted average of the
predictive variance in equation 3.7. While this approach is viable, it never-
theless ignores important information that can be obtained from variance
across the individual predictions ŷq ,k and is thus potentially too optimistic.
To remedy this issue, we postulate that from the view of combining indi-
vidual ŷq ,k , each contributing yq ,k was generated from the process

yq ,k = yq + ε1 + ε2,k,

where we assume two separate noise processes: (1) one whose variance σ 2 is
independent of the local model, that is, ε1 ∼ N(0, σ 2/wk) (and accounts for
the differences between the predictions of the local models) and (2) another,
which is the noise process ε2,k ∼ N(0, σ 2

pred,k/wk) of the individual local mod-
els. It can be shown (see appendix B) that equation 3.2 is a consistent way of
combining prediction from multiple models under the noise model we just
described and that the combined predictive variance over all models can be
approximated as

σ 2
pred =

∑
k wk σ 2

(
∑

k wk)2 +
∑

k wk σ 2
pred,k

(
∑

k wk)2 . (3.8)

The estimate of σpred,k is given in equation 3.7. The global variance across
models can be approximated as σ 2 = ∑

k wk(ŷq − ŷk,q )2/
∑

k wk . Inserting
these values in equation 3.8, we obtain:

σ 2
pred = 1

(
∑

k wk)2

K∑
k=1

wk
[
(ŷq − ŷk,q )2 + s2

k

(
1 + wkzT

k qk
)]

. (3.9)
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Figure 2: Function approximation with 200 noisy data points along with plots
of confidence intervals for (A) gaussian process regression and (B) LWPR algo-
rithms. Note the absence of data in the range [0.5 1.5].

A one-standard-deviation-based confidence interval would thus be

Ic = ŷq ± σpred. (3.10)

The variance estimate in equation 3.8 is consistent with the intuitive re-
quirement that when only one local model contributes to the prediction,
the variance is entirely attributed to the predictive variance of that single
model. Moreover, a query point that does not receive a high weight from any
local model will have a large confidence interval due to the small squared
sum-of-weight value in the denominator. Figure 2 illustrates comparisons of
confidence interval plots on a toy problem with 200 noisy data points. Data
from the range [0.5 1.5] were excluded from the training set. Both gaussian
process regression and LWPR show qualitatively similar confidence interval
bounds and fitting results.

4 Empirical Evaluation

The following sections provide an evaluation of our proposed LWPR learn-
ing algorithm over a range of artificial and real-world data sets. Whenever
useful and feasible, comparisons to state-of-the-art alternative learning al-
gorithms are provided, in particular, support vector regression (SVM) and
gaussian process regression (GP). SVMR and GPR were chosen due to their
generally acknowledged excellent performance in nonlinear regression on
finite data sets. However, it should be noted that both SVM and GP are batch
learning systems, while LWPR was implemented as a fully incremental al-
gorithm, as described in the previous sections.
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A B

Figure 3: (A) Target and (B) learned nonlinear cross function.

4.1 Function Approximation with Redundant and Irrelevant Data. We
implemented LWPR algorithm as outlined in section 3. In each local model,
the projection regressions are performed by (locally weighted) PLS, and the
distance metric D is learned by stochastic incremental cross validation; all
learning methods employed second-order learning techniques; incremen-
tal PLS uses recursive least squares, and gradient descent in the distance
metric was accelerated as described in Schaal and Atkeson (1998). In all our
evaluations, an initial (diagonal) distance metric of Ddef = 30I was chosen,
the activation threshold for adding local models was wgen = 0.2, and the
threshold for adding new projections was φ = 0.9 (cf. section 3.2).

As a first test, we ran LWPR on 500 noisy training data drawn
from the two-dimensional function (Cross 2D) generated from y =
max{exp(−10x2

1 ), exp(−50x2
2 , 1.25exp(−5(x2

1 + x2
2 )))} + N(0, 0.01), as shown

in Figure 3A. This function has a mixture of areas of rather high and rather
low curvature and is an interesting test of the learning and generalization
capabilities of a learning algorithm: learning models with low complex-
ity find it hard to capture the nonlinearities accurately, while more com-
plex models easily overfit, especially in linear regions. A second test added
eight constant (i.e., redundant) dimensions to the inputs and rotated this
new input space by a random 10-dimensional rotation matrix to create a
10-dimensional input space with high-rank deficiency (Cross 10D). A third
test added another 10 (irrelevant) input dimensions to the inputs of the sec-
ond test, each having N(0, 0.052) gaussian noise, thus obtaining a data set
with 20-dimensional input space (Cross 20D). Typical learning curves with
these data sets are illustrated in Figure 4. In all three cases, LWPR reduced
the normalized mean squared error (thick lines) on a noiseless test set (1681
points on a 41 × 41 grid in the unit-square in input space) rapidly in 10
to 20 epochs of training to less than nMSE = 0.05, and it converged to the
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Figure 4: Learning curves for 2D, 10D, and 20D data for cross approximation.

excellent function approximation result of nMSE = 0.015 after 100,000 data
presentations or 200 epochs.6 Figure 5 shows the adapted distance metric,
while Figure 3B illustrates the reconstruction of the original function from
the 20-dimensional test data, visualized in 3D, a highly accurate approxi-
mation. The rising thin lines in Figure 4 show the number of local models
that LWPR allocated during learning. The very thin lines at the bottom of
the graph indicate the average number of projections that the local models
allocated: the average settled at a value of around two local projections,
as is appropriate for this originally two-dimensional data set. This set of
tests demonstrates that LWPR is able to recover a low-dimensional nonlin-
ear function embedded in high-dimensional space despite irrelevant and
redundant dimensions and that the data efficiency of the algorithm does
not degrade in higher-dimensional input spaces. The computational com-
plexity of the algorithm increased only linearly with the number of input
dimensions, as explained in section 3.

The results of this evaluations can be directly compared with our ear-
lier work on the RFWR algorithm (Schaal & Atkeson, 1998), in particular
Figures 4 and 5 of this earlier article. The learning speed and the number
of allocated local models for LWPR is essentially the same as for RFWR
in the 2D test set. Applying RFWR to the 10- and 20-dimensional data set

6 Since LWPR is an incremental algorithm, data presentations in this case refer to
repeated random-order presentations of training data from our noisy data set of size 500.
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Figure 5: The automatically tuned distance metric for the cross approximation.

of this article, however, is problematic, as it requires a careful selection of
initial ridge regression parameters to stabilize the highly rank-deficient full
covariance matrix of the input data, and it is easy to create too much bias or
too little numerical stabilization initially, which can trap the local distance
metric adaptation in local minima. While the LWPR algorithm just computes
about a factor 10 times longer for the 20D experiment in comparison to the
2D experiment, RFWR requires a 1000-fold increase of computation time,
thus rendering this algorithm unsuitable for high-dimensional regression.
In order to compare LWPR’s results to other popular regression methods,
we evaluated the 2D, 10D, and 20D cross data sets with gaussian process re-
gression (GP) and support vector (SVM) regression in addition to our LWPR
method. It should be noted that neither SVM nor GP methods is an incre-
mental method, although they can be considered state-of-the-art for batch
regression under relatively small numbers of training data and reasonable
input dimensionality. The computational complexity of these methods is
prohibitively high for real-time applications. The GP algorithm (Gibbs &
MacKay, 1997) used a generic covariance function and optimized over the
hyperparameters. The SVM regression was performed using a standard
available package (Saunders et al., 1998) and optimized for kernel choices.

Figure 6 compares the performance of LWPR and gaussian processes for
the above-mentioned data sets using 100, 300, and 500 training data points.7

As in Figure 3 the test data set consisted of 1681 data points corresponding
to the vertices of a 41 × 41 grid over the unit square; the corresponding
output values were the exact function values. The approximation error was

7 We have not plotted the results for SVM regression since it was found to consistently
perform worse than GP regression for the given number of training data.
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Figure 6: Normalized mean squared error comparisons between LWPR and
gaussian processes for 2D, 10D, and 20D Cross data sets.

measured as a normalized weighted mean squared error, nMSE, that is, the
weighted MSE on the test set normalized by the variance of the outputs of
the test set. The weights were chosen as 1/σ 2

pred,i for each test point xi . Using
such a weighted nMSE was useful to allow the algorithms to incorporate
their confidence in the prediction of a query point, which is especially useful
for training data sets with few data points where query points often lie far
away from any training data and require strong extrapolation to form a
prediction. Multiple runs on 10 randomly chosen training data sets were
performed to accumulate the statistics.

As can be seen from Figure 6, the performance differences of LWPR and
GP were largely statistically insignificant across training data sizes and in-
put dimensionality. LWPR had a tendency to perform slightly better on the
100-point data sets, most likely due to its quickly decreasing confidence
when significant extrapolation is required for a test point. For the 300-point
data sets, GP had a minor advantage and less variance in its predictions,
while for 500-point data sets, both algorithms achieved equivalent results.
While GPs used all the input dimensions for predicting the output (de-
duced from the final converged coefficients of the covariance matrix), LWPR
stopped at an average of two local projections, reflecting that it exploited
the low-dimensional distribution of the data. Thus, this comparison illus-
trates that LWPR is a highly competitive learning algorithm in terms of its
generalization capabilities and accuracy of results, in spite of its’ being a
truly incremental, computationally efficient and real-time implementable
algorithm.

4.2 Comparisons on Benchmark Regression Data Sets. While LWPR
is specifically geared toward real-time incremental learning in high dimen-
sions, it can nevertheless also be employed for traditional batch data analy-
sis. Here we compare its performance on two natural real-world benchmark
data sets, again using gaussian processes and support vector regression as
competitors.
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Table 6: Comparison of Normalized Mean Squared Errors on Boston and
Abalone Data Sets.

Gaussian Process Support Vectors LWPR

Boston 0.0806 ± 0.0195 0.1115 ± 0.09 0.0846 ± 0.0225
Abalone 0.4440 ± 0.0209 0.4830 ± 0.03 0.4056 ± 0.0131

The data sets we used were the Boston Housing data and the Abalone
data set, both available from the UCI Machine Learning Repository (Hettich
& Bay 1999). The Boston Housing data, which had 14 attributes, was split
randomly (10 random splits) into disjoint sets of 404 training and 102 testing
data. The Abalone data set, which had 9 attributes, was downsampled to
yield 10 disjoint sets of 500 training data points and 1177 testing points.8

The GP used hyperparameter estimation for the open parameters of the
covariance matrix, while for SVM regression, the results were obtained
by employing a gaussian kernel of width 3.9 and 10 for the Boston and
Abalone data sets, respectively, based on the optimized values suggested in
Schölkopf, Smola, Williamson, & Bartlett (2000). Table 6 shows the compar-
isons of the normalized mean squared error (nMSE) achieved by GP, SVM,
and LWPR on both data sets. Once again, LWPR was highly competitive on
these real-world data sets, consistently outperforming SVM regression and
achieving very similar nMSE results as GP regression.

4.3 Sensorimotor Learning in High-Dimensional Space. In this sec-
tion, we look at the application of LWPR to real-time learning in high-
dimensional spaces in a data-rich environment, an example of which is
learning for robot control. In such domains, LWPR is (to the best of our
knowledge) one of the only viable and practical options for principled sta-
tistical learning. The goal of learning in this evaluation is to estimate the
inverse dynamics model (also referred to as an internal model) of the robotic
system such that it can be used as a component of a feedforward controller
for executing fast, accurate movements. The inverse dynamics model is
a mapping from joint position, joint velocity, and joint acceleration to joint
torques, a function with three times the number of degrees of freedom (DOF)
as input dimensionality.

We implemented LWPR on the real-time operating system (vx-Works)
for the Sarcos humanoid robot in Figure 7A, a 30 DOF system, which used
its right hand to draw a lying figure 8 pattern. Out of the four parallel

8 The gaussian process algorithm had problems of convergence and numerical stability
for training data sizes above 500 points. However, a more comprehensive computation
can be carried out by using techniques from Williams and Seeger (2001) to scale up the
GP results, as pointed out by one of the reviewers.
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Figure 7: (A) The 30-DOF SARCOS humanoid robot. (B) Results of online learn-
ing of the inverse dynamics with LWPR on the humanoid robot.

processors of the system, one 366 Mhz PowerPC processor was completely
devoted to lookup and learning with LWPR. In order to accelerate lookup
and training times, the nearest-neighbor data lookup described in section
3.2.1 was used. Learning of the inverse dynamics model required learning in
a 90-dimensional input space and the outputs were the 30 torque commands
for each of the DOFs. Ideally, we would learn one individual LWPR model
for each of the 30 output dimensions. However, as the learning of 30 parallel
LWPR models would have exceeded the computational power of our 366
Mhz real-time processors, we chose to learn one single LWPR model with
a 30-dimensional output vector: each projection of PLS in LWPR regressed
all outputs versus the projected input data. The projection direction was
chosen as the mean projection across all outputs at each projection stage
of PLS. This approach is suboptimal, as it is quite unlikely that all output
dimensions agree on one good projection direction; essentially, one assumes
that the gradients of all outputs point roughly into the same direction. On
the other hand, as D’Souza et al. (2001) demonstrated that movement data
of actual physical movement systems lie on locally low-dimensional dis-
tributions, one can hope that LWPR with multiple outputs can still work
successfully by simply spanning this locally low-dimensional input space
with all projections.

The LWPR model was trained online while the robot performed a
pseudo–randomly drifting figure 8 pattern in front of its body. Lookup pro-
ceeded at 480 Hz, while updating the learning model was achieved at about
70 Hz. After 10 seconds of training, learning was stopped, and the robot
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attempted to draw a planar figure 8 in the x − z plane of the robot end-
effector at 2 Hz frequency for the entire pattern. The same test pattern was
also performed after 300 seconds of training. Figure 7B demonstrates the re-
sult of learning. In this figure, Trajdesired denotes the desired figure 8 pattern;
Traj10 is the LWPR learning result after 10 seconds of training; and Traj300
is the result after 300 seconds of training. The Trajnouff trace demonstrates
the figure 8 patterns performed without any inverse dynamics model, just
using a low-gain negative feedback (proportional-derivative (PD)) con-
troller. LWPR rapidly improves over a control system with no inverse dy-
namics controller; within 10 seconds of movement, the most significant
inertial and gravity perturbation have been compensated. Convergence to
low error tracking of the figure 8 takes slightly longer—about 300 seconds
(Traj300 in Figure 7B—but is reliably achieved. About 50 local models were
created for this task. While tracking performance is not perfect, the learned
inverse dynamics outperformed the model estimated by rigid body dynam-
ics methods (An, Atkeson, & Hollerbach, 1988) significantly in terms of its
average tracking error of the desired trajectory. This rigid dynamics model
was estimated from about 1 hour of data collection and 30 minutes off-line
processing of the data. These results are the first that demonstrate an actual
implementation of real-time inverse dynamics learning on such a robot of
this complexity.

4.3.1 Online Learning for Autonomous Airplane Control. The online learn-
ing abilities of LWPR are ideally suited to be incorporated in algorithms
of provably stable adaptive control. The control theoretic development of
such an approach was presented in Nakanishi, Farrell, and Schaal (2004). In
essence, the problem formulation begins with a specific class of equations
of motion of the form

ẋ = f (x) + g(x)u, (4.1)

where x denotes the state of the control system, the control inputs, and f (x)
and g (x) are nonlinear function to approximated. A suitable control law for
such a system is

u = ĝ (x)−1 (− f̂ (x) + ẋc + K (xc − x)), (4.2)

where xc, ẋc are a desired reference trajectory to be tracked, and the “hat”
notation indicates that these are the approximated version of the unknown
function.

We applied LWPR in this control framework to learn the unknown func-
tion f and g for the problem of autonomous airplane control on a high-
fidelity simulator. For simplicity, we considered only a planar version of the



2626 S. Vijayakumar, A. D’Souza, and S. Schaal

airplane, governed by the differential equation (Stevens & Lewis, 2003):

V̇ = 1
m

(T cos α − D) − g sin γ

α̇ = − 1
mV

(L + T sin α) + g cos γ

V
+ Q (4.3)

Q̇ = cM.

In these equations, V denotes the forward speed of the airplane, m the mass,
T the thrust, α the angle of attack, g the gravity constant, γ the flight path
angle with regard to the horizontal world coordinate system axis, Q the pitch
rate, and c an inertial constant. The complexity of these equations is hidden
in D, L , and M, which are the unknown highly nonlinear aerodynamic
lift force, drag force, and pitch moment terms, which are specific to every
airplane.

While we will not go into the detail of provably stable adaptive control
with LWPR in this letter and how the control law 4.2 is applied for airplane
control, from the viewpoint of learning, the main components to learn are
the lift and drag forces, and the pitch moment. These can be obtained by
rearranging equation 4.3 to:

D = T cos α − (
V̇ + g sin γ

)
m

= fD (α, Q, V, M, γ, δOFL, δOFR, δMFL, δMFR, δSPL, δSPR)

L =
( g cos γ

V
+ Q − α̇

)
mV − T sin α

= fL (α, Q, V, M, γ, δOFL, δOFR, δMFL, δMFR, δSPL, δSPR)

M= Q
c

= fM (α, Q, V, M, γ, δOFL, δOFR, δMFL, δMFR, δSPL, δSPR) .

(4.4)

The δ terms denote the control surface angles of the airplane, with indices
Midboard-Flap-Left/Right (MFL, MFR), Outboard-Flap-Left/Right (OFL,
OFR), and left and right spoilers (SPL, SPR). All terms on the right-hand
side of equation 4.4 are known, such that we have to cope with three si-
multaneous function approximation problems in an 11-dimensional input
space, an ideal application for LWPR.

We implemented LWPR for the three functions above in a high-fidelity
simulink simulation of an autonomous airplane using the adaptive con-
trol approach of Nakanishi et al. (2004). The airplane started with no ini-
tial knowledge, just the proportional controller term in equation 4.2 (the
term multiplied by K). The task of the controller was to fly doublets—
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Figure 8: LWPR learning results for adaptive learning control on a simulated
autonomous airplane. (A) Tracking of flight angle: γ . (B) Approximation of
lift force: D. (C) Approximation of drag force: L. (D) Approximation of pitch
moment: M. At 400 seconds into the flight, a failure is simulated that locks one
control surface to a 17 degree angle. Note that for clarity of presentation, an axis
break was inserted after 200 seconds.

up-and-down trajectories that are essentially sinusoidlike variations of the
flight path angle γ .

Figure 8 demonstrates the results of this experiment. Figure 8A shows
the desired trajectory in γ and its realization by the controller. Figures 8B,
8C, and 8D illustrate the online function approximation of D, L , and M. As
can be seen, the control of γ achieves almost perfect tracking after just a few
seconds. The function approximations of D and L are very accurate after a
very short time. The approximation M requires longer for convergence but
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progresses quickly. About 10 local models were needed for learning fD and
fL , and about 20 local models were allocated for fM.

An interesting element of Figure 8 happens after 400 seconds of flight,
where we simulated a failure of the airplane mechanics by locking the MFR
to a 17 degree deflection. As can be seen, the function approximators very
quickly reorganize after this change, and the flight is successfully continued,
although γ tracking has some error for a while until it converges back to
good tracking performance. The strong signal changes in the first seconds
after the failure are due to oscillations of the control surfaces, not a problem
in function approximation. Without adaptive control, the airplane would
have crashed.

5 Discussion

Nonlinear regression with spatially localized models remains one of the
most data-efficient and computationally efficient methods for incremental
learning with automatic determination of the model complexity. In order
to overcome the curse of dimensionality of local learning systems, this ar-
ticle investigated methods of linear projection regression and how to em-
ploy them in spatially localized nonlinear function approximation for high-
dimensional input data with redundant and irrelevant components. Due to
its robustness in such a setting, we chose partial least squares regression
at the core of a novel function approximator, locally weighted projection
regression (LWPR). The proposed technique was evaluated on a range of
artificial and real-world data sets in up to 90-dimensional input spaces. Be-
sides showing fast and robust learning performance due to second-order
learning methods based on stochastic leave-one-out cross validation, LWPR
excelled by its low computational complexity: updating each local model
with a new data point remained linear in its computational cost in the num-
ber of inputs since the algorithm accomplishes good approximation results
with only three to four projections irrespective of the number of input di-
mensions. To our knowledge, this is the first spatially localized incremen-
tal learning system that can efficiently work in high-dimensional spaces
and is thus suited for online and real-time applications. In addition, LWPR
compared favorably in its generalization performance with state-of-the-art
batch regression regression methods like gaussian process regression and
can provide qualitatively similar estimates of confidence bounds and pre-
dictive variances.

The major drawback of LWPR in its current form is the need for gradi-
ent descent to optimize the local distance metrics in each local model, and
the manual tuning of a forgetting factor as required in almost all recursive
learning algorithms that accumulate sufficient statistics. Future work will
derive a probabilistic version of partial least squares regression that will
allow a complete Bayesian treatment of locally weighted regression with
locally linear models, with, we hope, no remaining open parameters for



Incremental Online Learning in High Dimensions 2629

manual adjustment. Whether a full Bayesian version of LWPR can achieve
the same computational efficiency as in the current implementation, how-
ever, remains to be seen.

Appendix A: PRESS Residuals for PLS

We prove that under the assumption that x lives in a reduced dimensional
subspace, the PRESS residuals of equation 3.4 can indeed be replaced by the
residual denoted by equation 3.5,

xT
i Pxi = zT

i Pzzi , (A.1)

where P = (XT X)†, Pz = (ZT Z)−1 corresponds to the (pseudo)inverse covari-
ance matrices and the symbol † represents the SVD pseudoinverse (Press,
Flannery, Teukolsky, & Vetterling, 1989) that generates a solution to the in-
verse in the embedded lower-dimensional manifold of x with minimum
norm solution in the sense of a Mahalanobis distance.
(Refer to Table 1 for the batch notations.)

Part 1. Let T be the transformation matrix with full rank in row space that
denotes coordinate transformation from the rank-deficient space of x to the
full rank space of z. Then for any z = TT x and the corresponding inverse
covariance matrix Pz, we can show that

zT
i Pzzi = xT

i T((XT)T (XT))−1TT xi = xT
i (XT X)†xi = xT

i Pxi . (A.2)

A linear transformation maintains the norm.
Part 2. In this part, we show that the recursive PLS projections that trans-

form the inputs x to z can be written as a linear transformation matrix, which
completes our proof. Clarifying some of the notation:9

X ≡




x1
...

xM


 , Z ≡




z1
...

zM


 ≡ [z̃1 . . . z̃R]. (A.3)

We now look at each of the R PLS projection directions and attempt to show
that zi = TT xi or (in a batch sense) Z = XT by showing (for each individual
projections) r , there exists a tr such that

z̃r = Xtr , where T = [t1 t2 . . . tr ]. (A.4)

9 Here, we have used z and z̃ to distinguish between the row vectors and the column
vectors, respectively, of the projected data matrix Z.
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For r = 1 (cf. Table 1),

z̃1 = XXT y = Xt1, where t1 = XT y. (A.5)

For r = 2 (cf. Table 1),

z̃2 = XresXT
resyres. (A.6)

We also know from the algorithm (cf. Table 1) that

Xres = X − z̃1z̃T
1 X

z̃T
1 z̃1

=
(

I − z̃1z̃T
1

z̃T
1 z̃1

)
X = Pz̃1 X (A.7)

yres = y − z̃1z̃T
1 y

z̃T
1 z̃1

=
(

I − z̃1z̃T
1

z̃T
1 z̃1

)
y = Pz̃1 y, (A.8)

where Pz̃1 represents a projection operator. Using results from equations A.7
and A.8 in equation A.6,

s2 = Pz̃1 X(Pz̃1 X)T Pz̃1 y

= Pz̃1 XXT Pz̃1 y . . . using property of projection operator: Pz̃1 = PT
z̃1

= Pz̃1 Pz̃1 = Pz̃1 Xt′2. (A.9)

It can be shown easily by writing out the pseudo-inversion that there exists
an operator R2 = (I − u1ut

1XT X/uT
1 XT Xu1) such that

Pz̃1 X = XR2. (A.10)

Using equations A.9 and A.10, we can write

z̃2 = Xt2 where t2 = R2t′2 =
(

I − u1ut
1XT X

uT
1 XT Xu1

)
XT Pz̃1 y. (A.11)

This operation can be carried out recursively to determine all the tk , show-
ing that the PLS projections can be written as a linear transformation.
This completes the proof of the validity of the modified PRESS residual of
equation A.1 for PLS projections.

Also note that, Pz is diagonal by virtue of the fact that in the PLS algo-
rithm, after every projection iteration, the projected components of input
space X are subtracted before computing the next projection (Table 1d or
Table 3 2b.3), ensuring the next component of Z will always be orthogonal
to the previous ones. This property was discussed in Frank and Friedman
(1993).
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Appendix B: Combined Predictive Variances

The noise model for combining prediction from individual local model is

yq ,k = yq + ε1 + ε2,k,

where ε1 ∼ N(0, σ 2/wk) and ε2,k ∼ N(0, σ 2
pred,k/wk). The mean prediction due

to multiple local models can be written according to a heteroscedastic aver-
age,

ŷq =
∑

k

(
wk

σ 2 + σ 2
pred,k

yq ,k

)/ ∑
k

(
wk

σ 2 + σ 2
pred,k

)

(B.1)
≈

∑
k wk yq ,k∑

k wk
≈

∑
k wk ŷq ,k∑

k wk
,

under the assumption that (σ 2 + σ 2
pred,k) is approximately constant for all

contributing models k and that ŷq ,k is an estimate over multiple noisy in-
stances of yq ,k that has averaged out the noise process ε2,k—exactly what
happens within each local model. Thus, equation B.1 is consistent with
equation 3.2 under the proposed dual noise model. The combined predic-
tive variance can now be derived as

σ 2
pred = E

{
y2

q

} − (E{yq })2 = E

{(∑
k wk yq ,k∑

k wk

)2}
− (E{yq })2

= 1( ∑
k wk

)2 E

{( ∑
k

wk yq

)2

+
( ∑

k

wkε1

)2

+
( ∑

k

wkε2,k

)2}
− (ŷq )2

= 1
(
∑

k wk)2 E

{( ∑
k

wkε1

)2

+
( ∑

k

wkε2,k

)2}
. (B.2)

Using the fact that E{x2} = (E{x})2 + var(x) and noting that ε1 and ε2,k have
zero mean,

σ 2
pred = 1( ∑

k wk
)2 var

( ∑
k

wkε1

)
+ 1( ∑

k wk
)2 var

( ∑
k

wkε2,k

)

= 1( ∑
k wk

)2

[∑
k

w2
k
σ 2

wk

]
+ 1( ∑

k wk
)2

[∑
k

w2
k

σ 2
pred,k

wk

]
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σ 2
pred =

∑
k wkσ

2( ∑
k wk

)2 +
∑

k wkσ
2
pred,k( ∑

k wk
)2 , (B.3)

which gives the expression for the combined predictive variances.
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