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Abstract: Locally weighted learning (LWL) is a class of techniques from nonparametric statis-
tics that provides useful representations and training algorithms for learning about complex
phenomena during autonomous adaptive control of robotic systems. This paper introduces sev-
eral LWL algorithms that have been tested successfully in real-time learning of complex robot
tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL
that does not need to remember any data explicitly. In contrast to the traditional belief that LWL
methods cannot work well in high-dimensional spaces, we provide new algorithms that have been
tested on up to 90 dimensional learning problems. The applicability of our LWL algorithms is
demonstrated in various robot learning examples, including the learning of devil-sticking, pole-
balancing by a humanoid robot arm, and inverse-dynamics learning for a seven and a 30 degree-
of-freedom robot. In all these examples, the application of our statistical neural networks tech-
niques allowed either faster or more accurate acquisition of motor control than classical control
engineering.
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1 Introduction

The necessity for self-improvement in control systems is becoming more apparent as
fields such as robotics, factory automation, and autonomous vehicles become impeded
by the complexity of inventing and programming satisfactory control laws. Learned
models of complex tasks can aid the design of appropriate control laws for these tasks,
which often involve decisions based on streams of information from sensors and actua-
tors, and where data is relatively plentiful. Learning also seems to be the only viable re-
search approach toward the generation of flexible autonomous robots that can perform
multiple tasks (Schaal, 1999), with the hope of creating an autonomous humanoid robot
at some point and to approach human abilities in sensorimotor control.



When approaching a learning problem, many alternative learning methods are avail-
able from the neural network, statistical, and machine learning literature. The current
focus in learning research lies on increasingly more sophisticated algorithms for the off-
line analysis of finite data sets, without severe constraints on the computational com-
plexity of the algorithms. Examples of such algorithms include the revival of Bayesian
inference (Bishop, 1995, Williams and Rasmussen, 1996) and the new algorithms devel-
oped in the framework of structural risk minimization (Vapnik, 1982, Cortes and Vap-
nik, 1995). Mostly, these methods target problems in classification and diagnostics, al-
though several extensions to regression problems exist (e.g., Vapnik, Golowich, and
Smola, 1996).

In motor learning, however, special constraints need to be taken into account when
approaching a learning task. Most learning problems in motor learning require regres-
sion networks, for instance, as in the learning of internal models, coordinate transforma-
tions, control policies, or evaluation functions in reinforcement learning. Data in motor
learning is usually not limited to a finite data set—whenever the robot moves new data
are generated and should be included in the learning network. Thus, computationally
inexpensive training methods are important in this domain, and on-line learning would
be preferred. Among the most significant additional problems of motor learning is that
the distributions of the learning data may change continuously. Input distributions
change due to the fact that a flexible movement system may work on different tasks at
different times, thus creating different kinds of training data. Moreover, the input-
output relationship of the data—the conditional distribution—may change when the
learning system changes its physical properties or when learning involves nonstation-
ary training data as in reinforcement learning. Such changing distributions easily lead
to catastrophic interference in many neural network paradigms, i.e., the unlearning of
useful information when training on new data (Schaal and Atkeson, 1998). As a last
element, motor learning tasks of complex motor systems can be rather high dimensional
in the number of input dimensions, thus increasing the need for efficient learning algo-
rithms. The current trend in learning research is largely orthogonal to the problems of
motor learning.

In this paper, we advocate locally weighted learning methods (LWL) for motor
learning, a learning technique derived from nonparametric statistics (Atkeson and
Schaal, 1995, Cleveland and Loader, 1995, Hastie and Tibshirani, 1994). LWL provides a
principled approach to learning models of complex phenomena, dealing with large
amounts of data, training quickly, and avoiding interference between multiple tasks
during control of complex systems (Atkeson, Moore, and Schaal, 1997a, Atkeson,
Moore, and Schaal, 1997b). LWL methods can even deal successfully with high dimen-
sional input data that have redundant and irrelevant inputs while keeping the computa-
tional complexity of the algorithms linear in the number of inputs. LWL methods come
in two different strategies. Memory-based LWL is a “lazy learning” method (Aha, 1997)
that simply stores all training data in memory and uses efficient lookup and interpola-
tion techniques when a prediction for a new input has to be generated. This kind of
LWL is useful when data need to be interpreted in flexible ways, for instance, as for-



ward or inverse transformations. Memory-based LWL is therefore a “least commit-
ment” approach and very data efficient. Non-memory-based LWL has essentially the
same statistical properties as memory-based LWL, but it avoids storing data in memory
by using recursive system identification techniques (Ljung and Soderstrom, 1986). In
this way, non-memory-based LWL caches the information about training data in com-
pact representations, at the cost that a flexible re-evaluation of data becomes impossible,
but lookup times for new data become significantly faster.

In the following, we will describe four LWL algorithms that are the most suitable to
robot learning problems. The goal of the next section is to provide clear pseudo-code
explanations of these algorithms. Afterwards, we will illustrate the successful applica-
tion of some of the methods to real-time robot learning, involving dexterous manipula-
tion tasks such as devil sticking and pole balancing with an anthropomorphic robot
arm, and classical problems like the learning of high-dimensional inverse dynamics
models.

2 Locally Weighted Learning

In all our algorithms we assume that the data generating model for our regression
problems has the standard form y = f(x)+ ¢, where x ER" is a n-dimensional input vec-
tor, the noise term has mean zero, E{e}=0, and, for simplicity, the output is one-
dimensional.

The key concept of our LWL methods is to approximate nonlinear functions by
means of piecewise linear models (Cleveland, 1979), similar to a first-order Taylor series
expansion. Locally linear models have been demonstrated to be an excellent statistical
compromise among the possible local polynomials that can be fit to data (Hastie and
Loader, 1993). The key problem in LWL is to determine the region of validity in which a
local model can be trusted, and how to fit the local model in this region.

In all following algorithms, we compute the region of validity, called a receptive field,
of each linear model from a Gaussian kernel:

w, =exp(—%(x—ck)TDk(x—ck)) (1)

where c, is the center of the k" linear model, and D, corresponds to a positive semi-
definite distance metric that determines the size and shape of region of validity of the
linear model. Other kernel functions are possible (Atkeson et al., 1997a) but add only
minor differences to the quality of function fitting.

2.1 Locally Weighted Regression

The most straightforward LWL algorithm with locally linear models is memory-based
Locally Weighted Regression (LWR) (Atkeson, 1989, Atkeson, 1992, Atkeson and
Schaal, 1995). Training of LWR is very fast: it just requires adding new training data to



the memory. Only when a prediction is needed for a query point x_, the following
weighted regression analysis is performed:

The LWR Algorithm:

Given:

A query point x, and p training points {x;, y,} in memory
Compute Prediction:

a) compute diagonal weight matrix W
where w, = exp(—% (Xi - xq)TD(xi - xq))

b) build matrix X and vector y such that (2)

T T
X = (%X,.X,,...%X,)" whereg, =[(xi —xq) 1]

Y= (3 red, )

c) compute locally linear model
B=(X"WX) X"Wy
d) the prediction for x_ is thus

)A]q = ﬁn+1
B,., denotes the (n+1)" element of the regression vector 8. The computational com-

plexity of LWR is proportional to O(pn’). Since normally most of the p training data
points receive an approximately zero weight as they are too far away from the query
point, the computational complexity of LWR can be reduced significantly, particularly
when exploiting efficient data structures like kd-trees for keeping the data in memory
(Moore, 1990). Thus, LWR can be applied efficiently in real-time for problems that are
not too high dimensional in the number of inputs n and that do not accumulate too
much data in one particular area of the input space.

The only open parameter in (2) is the distance metric D, introduced in Equation (1).
After a sufficient amount of data has been incorporated, D can be optimized by leave-

one-out cross validation. To avoid too many open parameters, D is usually assumed to
be a global diagonal matrix D = & diag([n,,n,,...,n,]), where h is a scale parameter, and

the n, normalize the range of the input dimensions, e.g., by the variance of each input
dimension n, = 1/0°. Leave-one-out cross validation is thus performed only as a one-
dimensional search over the parameter :



Leave — One - Out Cross Validation:
Given:
a set H of reasonable values A,
Algorithm:
For all h, €H:
sse, =0
Fori=1:p (3)
a)x, =X,
b) temporarily exclude {x;, y,} from training data

c) compute LWR prediction j, with reduced data
d) sse, = sse, + (yi -, )2
Choose the optimal h,” such that 4" = min{sse, }

Of course, at an increased computational cost, leave-one-out cross validation can also be
performed treating all coefficients of the distance metric as open parameters, usually by
using gradient descent methods (Atkeson, 1992; Atkeson and Schaal, 1995; Lowe, 1995).

2.2 Locally Weighted Partial Least Squares

Under two circumstances it is necessary to enhance the LWR algorithm above: if the
number of input dimensions grows large, or if there are redundant input dimensions
such that the matrix inversion in (2) becomes numerically unstable. There is a computa-
tional efficient technique from the statistics literature, Partial Least Squares Regression
(PLS) (Wold, 1975, Frank and Friedman, 1993, Schaal, Vijayakumar, and Atkeson, 1998,
Vijayakumar and Schaal, 2000), that is ideally suited to reduce the computational com-
plexity of LWR and to avoid numerical problems. The essence of PLS is to fit linear
models using a hierarchy of univariate regressions along selected projections in input
space. The projections are chosen according to the correlation of input and output data,
and the algorithm assures that subsequent projections are orthogonal in input space. It
is straightforward to derive a locally weighted PLS algorithm (LWPLS), as shown in
Equation (4). The only steps in LWPLS that may look unusual at a first glance are the
ones indicated by (*) and (**) in Equation (4). At these steps, the input data is regressed
against the current projection s (*), and subsequently, the input space is reduced (**),
This procedure ensures that the next projection direction u,,, is guaranteed to be or-

thogonal with respect to all previous projection directions.



The LWPLS Algorithm:

Given:
a query point x_ and p training points {x,, y,}in memory
Compute Prediction:

a) compute diagonal weight matrix W
1
where w, = exp(—a(xi - xq)TD(xl. - xq))

b) build the matrix X and vector y such that

i=iwiixi/iwii; ﬁo=i /

X=(X,,X,,...,X ) where x, = (x - x
y= (j}l,’yZ""’yp) where j, = (yi - /30)
c) recursively compute locally linear model

Initialize: Z, = X, res, =y

Fori=1:r (4)

w, =7 Wres,
s, =Z,_,u,

s"Wres._
/31 = lT—ll

s; Ws,

_SWZ,,

p = STWs. (*)

res, =res,, —s.f3,
Zi = Zi—l —-Sp,; (**)

d) the prediction for x_ is thus
Initialize: z, =x, - X,y = f,
Fori=1:r

T
§i =121,
yq < yq + siﬁi
T
Z,=272,, -Sp;

There is a remarkable property of LWPLS: if the input data is locally statistically in-
dependent (i.e., has a diagonal covariance matrix) and is approximately locally linear,
LWPLS will find an optimal linear approximation for the data with a single projection



(Vijayakumar and Schaal, 2000). This statement is true since LWPLS will immediately
find the optimal projection direction, i.e., the gradient of the data. An important ques-
tion is thus how many projections r should be chosen if the input data are not statisti-
cally independent. Typically, the squared error res; at iteration i should be significantly
lower than that of the previous step. Thus, a simple heuristic to stop adding projections
is to require that for every new projection, the squared error be reduced at least by a
certain ratio:
res;

L < ¢, where ¢ €0,1] (5)

res;

We usually use ¢ =0.5 for all our learning tasks. Thus, as in LWR, the only open pa-
rameter in LWPLS becomes the distance metric D, which can be optimized according to
the strategy in (3).

The computational complexity of LWPLS is O(rnp), where r is the number of projec-
tions, n the number of input dimensions, and p the number of data points. If one as-
sumes that most of the data has a zero weight and that only a fixed number of projec-
tions are needed to achieve a good fit, the computational complexity tends towards lin-
ear in the number of input dimensions. This property constitutes a significant saving
over the more than quadratic cost of LWR, particularly in high dimensional input
spaces. Additionally, the correlation step to select the projection direction eliminates ir-
relevant and redundant input dimensions and results in excellent numerical robustness
of LWPLS.

2.3 Receptive Field Weighted Regression

Two points of concern remain with LWR and LWPLS. If the learning system receives a
large, possibly never ending stream of input data, as is typical in online robot learning,
both memory requirements to store all data as well as the computational cost to evalu-
ate algorithms (2) or (4) become too large. Under these circumstances, a non-memory-
based version of LWL is desirable such that each new data point is incrementally incor-
porated in the learning system and lookup speed becomes accelerated.

A first approach to an incremental LWL algorithm was suggested in previous work
(Schaal and Atkeson, 1998), using LWR as the starting point. The idea of the algorithm
is straightforward: instead of postponing the computation of a local linear model until a
prediction needs to be made, local models are built continuously in the entire support
area of the input data at selected points in input space (see details below). The predic-
tion for a query point is then formed as the weighted average of the predictions of all

local models:
. E W,
A (6)
Ek=1 k



The weights in (6) are computed according to the weighting kernel of each local model
in Equation (7). Incremental updates of the parameters of the linear models can be ac-
complished with recursive least squares techniques (Ljung and Soderstrom, 1986). Thus,
the LWR algorithm from (2) becomes the Receptive Field Weighted Regression (RFWR)
algorithm (Schaal and Atkeson, 1998) as given in the following equations (7).

The RFWR Algorithm:

Given:

A training point (x, y)

Update all K local models:

1 T
W, = eXP(‘E(X_ ck) Dk(X - Ck)) (7)
=B+ w, P'%e,, where % =[(X—ck)T 1]
( N
and P! =% P; —;"X;P" and e, = (y —ﬁ,:lTi)
—+X'P/x
Wy

Compute Prediction for query point X, :
= BiX,
In the above equations, A €[0.1] is a forgetting factor that determines how much old

data in the regression parameters will be forgotten, similar as in recursive system iden-
tification techniques (Ljung and Soderstrom, 1986). The variables P, cache the inverse of

the covariance matrix of the input variables and needs to be initialized as P, = Ir, where
Iis the identity matrix and r is usually a large number, e.g., 10"

Thus, as in all the previous LWL algorithms, the only remaining open parameter is
the distance metric D. In contrast to the algorithm in (3) that only determined D as a
global parameter to be used everywhere in input space, it is now possible to optimize
the D, for every local model individually. In (Schaal and Atkeson, 1998) we developed
an incremental optimization of D by means of gradient descent in a stochastic leave-
one-out cross validation criterion. The following equations summarize the update for-
mulae. Since the gradient descent update is the same for all local models, the index k is
omitted.

RFWR Gradient descent update of D:

Cost Function for Gradient Descent:

S i(Wi"yi_yi"Z S D



Recursive Update Algorithm:

M =M"-a ;_I\J/I with D = M"M,where M is upper triangular

n+1 =}LW” +w

1
E"™ = AE" +we

H"' = \H" + Mixeh”, where h=wx"P"'x

R'™ —JR" + w’ el Xx"
1-h
aJ é’Jl, w dJ,
M aM ow | W M (8)
where:
ow 1 oD oJ.
2L tulx- o Slx-e)l S 3D,
M, 2 M, M, & aM
oD, ,
—L =5,M,+6,M, (disthe Kronecker operator)
0Mrl J 7
p é,Jl ,‘ En+1
E a To
& ow (Wn+)

1 n+ od n+ n n+l L& n+ n
e (¢ - (2P %(y-%"p")) @ H ~(2P" 3P O R')
where the operator ® denotes an element-wise multiplication of two homomorphic ma-
trices or vectors with a subsequent summation of all coefficients, Q®V = 2Q,V,. All re-

cursive variables are initialized with zeros, except for the initial distance metric that is
set to a manually chosen default value D=D,,;

The above learning rules can be embedded in an incremental learning system that
automatically allocates new locally linear models as needed (Schaal and Atkeson, 1998):

Initialize RFWR with no receptive field (RF);
For every new training sample (x,):
For k=1 to K:
calculate the activation from (1)
update according to (7) and (8)
end;
If no linear model was activated by more than w,,,;
create a new RF with e=x, D=D,,;
end;
end;




In this pseudo-code algorithm, w,,, is a threshold that determines when to create a new
receptive field, e.g., w,,=0.1, and D, is the initial (usually diagonal) distance metric in
Equation (1). The decomposition of D into M'M can be achieved with a Cholesky de-
composition (Press, Flannery, Teukolsky, and Vetterling, 1989).

2.4 Locally Weighted Projection Regression

While RFWR is a powerful algorithm for incremental function approximation, it be-
comes computationally too expensive in high dimensional spaces. For such cases,
LWPLS can be reformulated as an incremental algorithm, too, called Locally Weighted
Projection Regression (LWPR). The update equations for one local model become:

Locally Weighted Projection Regression
Given: A training point (x, y)
Update the means of inputs and output:

et AW'XG+WX

0 Wn+1

n pn+l
n+l _ )\'W ﬁo + wy
0 - Wn+l

where W' = AW" +w

Update the local model:

Initialize: z, = x - x;"', res, = y— B
Fori=1:r,

a) ut=Au+wz,_ res, 9)

1

nal
c)  SS=ASS"+ws]

d) SR™'=ASR"+wsres,,
e) SZ'"'=ASZ'+wz_s,
DB = SR s

§ b =Sz s

b) s =z _u

n+l1
h) z,=z_,-5p;
: n+l
i) res,=res,_, -5,
. i 2
j) SSE™ = ASSE" +wres;

In the above equations, the variables SS, SR, and SZ are memory terms that enable us to
achieve the univariate regression in step f) in a recursive least squares fashion, i.e., a fast
Newton-like method as in RFWR (cf. Equation (7)). The other steps are incremental
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counterparts of the LWPLS algorithm above. Step j) computes the sum of squared errors
that is used to determine when to stop adding projections according to (5). Predictions
for a query point are formed exactly as in Eqn (4)-d.

In analogy with RFWR, an incremental update of the distance metric D can be de-
rived based on stochastic one-leave-out cross validation. Due to the hierarchical fitting
procedure of PLS, the one-leave-out cross validation cost function can only be formu-
lated in approximation by treating all projections as independent:

LWPR Gradient descent update of D:

Cost Function for Gradient Descent:

1 & wiresy o
J_iW-iE'lg(1_w- Sei )2+y1,,12-1DU

i T
s, Ws,

Recursive Update Algorithm:

ad
M™' =M" -a ﬁ with D = M"M,where M is upper triangular

W' = AW +w
E"' = AE! + wres,
2
H"' = AH] + 25 % wwhere h,=w sﬁﬂ
1 - hk Sk (10)
R = IR’ + w’res;_S;
1-h
P r (9.] )
ol _ w $3 P, w_ al,
M IM&L dw W M
where:
u oD,
Mo Lxe Px—e) Hooyy 3 b, 2
aMrl 2 &Mrl aMrl i,j=1 &Mrl
JD, .
—~L =6,M, +6,M, (6is the Kronecker operator)
oM

L) A i ( )
PR AN PP S Y Y H',;—z(_sk 1) R;
2 & ow (g W SS;” ssiT) )

Thus, the ensuing learning algorithm is the same as for RFWR by using the update
equations (9) and (10) instead of (7) and (8), and by initializing a new receptive field
with r=2, i.e., two initial projections in order to allow deciding whether to add new
projections according to Equation (5). For a diagonal distance metric D, and under the
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assumption that r remains small, the computational complexity of the update of all pa-
rameters of LWPR is linear in the number of input dimensions. Thus, LWPR constitutes
the computationally most efficient algorithm in the series of Locally Weighted Learning
algorithms, and, as will be demonstrated below, even works successfully in very high-
dimensional input spaces.

3 Empirical Evaluations

The following examples illustrate how our LWL techniques have been applied to vari-
ous robot learning problems. Common to all these application is that the learning algo-
rithm acquired an internal model of a dynamic system, and that this model was used
subsequently in designing a controller for a robot task. Such model-based control and
learning has also become increasingly more an accepted hypothesis of how biological
movements acquire and perform skilled movement (Kawato, 1999; Wolpert, Miall, and
Kawato, 1998).

3.1 Learning Devil-Sticking

Devil sticking is a juggling task where a center stick is batted back and forth between
two handsticks (Figure 1a). Figure 1b shows a sketch of our devil-sticking robot. The
robot uses its top two joints to perform planar devil-sticking; more details can be found
in (Schaal and Atkeson, 1994). The task of the robot is to learn a continuous left-right-
left-etc. juggling pattern. For learning, the task is modeled as a discrete function that
maps impact states on one hand to impact states on the other hand. A state is given as a
five dimensional vector x = (p,H,X,y,é)T, comprising impact position, angle, and veloci-
ties of the center of the devil stick and angular velocity (Figure 1b), respectively. The
task command u =(x,, yh,ét,vx,vy)r is given by a catch position (x,,y,), an angular trig-

ger velocity (6,)when to start the throw, and the two dimensional throw direction
(v,,v,). In order to compute appropriate Linear Quadratic Regulator (LQR) controllers

for this task (Dyer and McReynolds, 1970), the robot learns the nonlinear mapping be-
tween the current state and command, and the next state, i.e., a 10 dimensional input to
five dimensional output function. This task is ideally suited for LWR as it is not too high
dimensional and new training data are only generated at about 1-2Hz, i.e., whenever
the center stick hits one of the handsticks. Moreover, memory-based learning also sup-
ports efficient search of the state-action space for statistically good new commands
(Schaal and Atkeson, 1994). As a result, successful (i.e., more than 1000 consecutive hits)
devil sticking could be achieved in about 40-80 trials, corresponding to about 300-800
training points in memory (Figure 2). This is a remarkable learning rate given that hu-
mans need about one week of one hour practicing a day before they learn to juggle the
devilstick. The final performance of the robot was also quite superior to our early at-
tempts to implement the task based on classical system identification and controller de-
sign, which only accomplished up to 100 consecutive hits.
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(b) ﬁ/ﬁ

Figure 1: (a) an illustration of devil sticking, (b) sketch of our devil sticking robot: the flow of force from
each motor into the robot is indicated by different shadings of the robot links, and a position change due
to an application of motor 1 or motor 2, respectively, is indicated in the small sketches

1000 5

9003 \

8003 —— Runl \ |\

03 R | |

600 3 |

5004 | — - Runlll | |
|
\

4003 \
3003 o
200 - |
1003 | |
G_III\IIIII\\III\IIIIII\IHIIIIII\III\T‘II‘IIIVIWI“III‘IIIIIIIIII\III\\IIIII\HHIIIIIHI
1 11 21 31 4 51 61 71 81

Trial Number

Numb er of Hits per Trial

Figure 2: Learning curves of devil sticking for three learning runs.

3.2 Learning Pole Balancing

We implemented learning of the task of balancing a pole on a fingertip with a 7-degree-
of-freedom anthropomorphic robot arm (Figure 3a). The low-level robot controller ran
in a compute-torque mode (Craig, 1986) at 480Hz out of 8 parallel processors located in
a VME bus, running the real-time operating system vxWorks. The inverse dynamics
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model of the robot had been estimated using established parameter estimation tech-
niques from control theory (An, Atkeson, and Hollerbach, 1988). The goal of learning
was to generate appropriate task level commands, i.e., Cartesian accelerations of the
fingertip, to keep the pole upright. Task level commands were converted to actuator
space by means of the extended Jacobian method (Baillieul and Martin, 1990). As input,
the robot received data from its color-tracking-based stereo vision system with more
than 60ms processing delays. Learning was implemented on-line using REWR. The task
of RFWR was to acquire a discrete time forward dynamics model of the pole that was
both used to compute an LQR controller and to realize a Kalman predictor to eliminate
the delays in visual input. The forward model had 12 input dimensions (3 positions of
the lower pole end, 2 angular positions, the corresponding 5 velocities, and 2 horizontal
accelerations of the fingertip) that are mapped to 10 outputs, i.e., the next state of the
pole. The robot only received training data when it actually moved.

Figure 3b shows the results of learning. It took about 10-20 trials before learning suc-
ceeded in reliable performance longer than one minute. We also explored learning from
demonstration, where a human demonstrated how to balance a pole for 30 seconds
while the robot was learning the forward model by just “watching”. From the demon-
stration, the robot could extract the forward dynamics model of the pole-balancing task
and synthesize the LQR controller. Now learning was reliably accomplished in one sin-
gle trial, using a large variety of physically different poles and using demonstrations
from arbitrary people in the laboratory.

80

70
601
501
5 40
30

20

10; —— a) scratch

b) primed model

: T T
1 10 100

b) #Trial

Figure 3: a) Sarcos Dexterous Robot Arm; b) Smoothed average of 10 learning curves of the robot for pole
balancing. The trials were aborted after successful balancing of 60 seconds. We also tested long term per-
formance of the learning system by running pole balancing for over an hour—the pole was never
dropped.

3.3 Inverse Dynamics Learning

As all our anthropomorphic robots are rather light-weight, compliant, and driven by di-
rect-drive hydraulic motors, using methods from rigid body dynamics to estimate their
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inverse models resulted in rather inaccurate performance due to unknown nonlineari-
ties in these systems. Therefore, the goal of the following learning experiments was to
approximate the inverse dynamics of a 7-degree-of-freedom anthropomorphic robot
arm (Figure 3a) from a data set consisting of 45,000 data points, collected at 100Hz from
the actual robot performing various rhythmic and discrete movement tasks (this corre-
sponds to 7.5 minutes of data collection). The data consisted of 21 input dimensions: 7
joint positions, velocities, and accelerations. The goal of learning was to approximate
the appropriate torque command of the shoulder motor in response to the input vector.
To increase the difficulty of learning, we added 29 irrelevant dimensions to the inputs
with N(0,0.05%) Gaussian noise. 5,000 data points were excluded from the training data
as a test set.

The high dimensional input space of this learning problem requires an application of
LWPR. Figure 4 shows the learning results in comparison to parametric estimation of
the inverse dynamics based on rigid body dynamics (An et al., 1988), and in comparison
to a sigmoidal feedforward neural network with 30 hidden units trained with Leven-
berg-Marquardt optimization. From the very beginning, LWPR outperformed the pa-
rametric model. Within about 500,000 training points (about 30 minutes training on a
500Mhz DEC Alpha Computer), LWPR converged to the excellent result of
nMSE=0.042. It employed an average of only 3.8 projections per local model despite the
fact that the input dimensionality was 50. During learning, the number of local models
increased by a factor of 6 from about 50 initial models to about 310 models. This in-
crease is due to the adjustment of the distance metric D in Equation (10) that was ini-
tialized to form a rather large kernel. Since this large kernel oversmoothes the data,
LWPR reduced the kernel size, and in response more kernels needed to be allocated.
The sigmoidal neural network achieved the same learning results as LWPR, however, it
required one night of training and could only operate in batch mode.
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Figure 4: Learning curve for learning the inverse dynamics model of the robot from a 50 dimensional data
set that included 29 irrelevant dimensions.
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We also applied LWPR to an even more complex robot, a 30 DOFs humanoid robot
as shown in Figure 5a. Again, we learned the inverse dynamics model for the shoulder
motor, however, this time involving 90 input dimensions (i.e., 30 positions, 30 velocities,
and 30 accelerations of all DOFs). The learning results, shown in Figure 5b, are similar
to Figure 4. Very quickly, LWPR outperformed the inverse dynamics model estimated
from rigid body dynamics and settled at a result that was more than three times more
accurate. The huge learning space required more than 2000 local models, using about
2.5 local projections on average. In our real-time implementation of LWPR on this robot,
the learned models achieve by far better tracking performance than the parameter esti-
mation techniques.
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Figure 5: a) Humanoid robot in our laboratory; b) inverse dynamics learning for the right shoulder motor
of the humanoid.

4 Conclusions

This paper presented Locally Weighted Learning algorithms for real-time robot learn-
ing. The algorithms are easy to implement, use sound statistical learning techniques,
converge quickly to accurate learning results, and can be implemented in a purely in-
cremental fashion. We demonstrated that the latest version of our algorithms is capable
of dealing with high dimensional input spaces that even have redundant and irrelevant
input dimensions while the computational complexity of an incremental update re-
mained linear in the number of inputs. In several examples, we demonstrated how LWL
algorithms were applied successfully to complex learning problems with actual robots.
From the view point of function approximation, LWL algorithms are competitive meth-
ods of supervised learning of regression problem and achieve results that are compara-
ble with state-of-the-art learning techniques. However, what makes the presented algo-
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rithms special is their learning speed, numerical robustness in high dimensional spaces,
and ability to learn incrementally. To the best of our knowledge, there is currently no
comparable learning framework that combines all the required properties for real-time
motor learning as well as Locally Weighted Learning. Our learning results demonstrate
that autonomous learning can be applied successfully to rather complex robotic sys-
tems, and that learning can achieve performance that outperforms traditional tech-
niques from control theory.
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