
A Library for Locally Weighted Projection Regression

— Supplementary Documentation —

Stefan Klanke and Sethu Vijayakumar

March 14, 2008

Contents

1 Introduction 1

2 When to use LWPR (and when not) 2

3 How to use LWPR 2

4 Top-level elements of the LWPR model 3
4.1 Basic elements . 3
4.2 Elements related to distance metrics . 4
4.3 Elements controlling the local regression . 5
4.4 Read-only elements for inspection . 5

5 Elements of a Receptive Field 5

6 Heuristics and numerical safety measures 7
6.1 Initialisation of receptive fields . 7
6.2 Check whether to add a new PLS projection . 7
6.3 Adding a new PLS projection . 8
6.4 Updates to the regression parameters . 8
6.5 Distance metric updates . 8
6.6 Predictions . 9
6.7 Updating receptive fields . 9
6.8 Adding and pruning receptive fields . 9

1 Introduction

Locally weighted projection regression (LWPR) is an algorithm that achieves nonlinear function
approximation in high dimensional spaces even in the presence of redundant and irrelevant input
dimensions [1]. At its core, it uses locally linear models

ψk(x) = β0 +
R∑

i=1

βisi (1)

spanned by a small number of univariate regressions in selected directions in input space, and it
employs weighted partial least squares (PLS) to detect those directions and the corresponding
slopes βi. This nonparametric local learning system learns rapidly with second order learning

1

methods based on incremental training. LWPR uses statistically sound stochastic cross valida-
tion for automatically updating the distance metrics of each local model (the size of its “receptive
field”). In particular, it minimises

J =
1∑M

i=1wi

M∑
i=1

wi(yi − ŷi)2

(1− wisT
i Pssi)2

+
γ

N

N∑
i,j=1

D2
ij (2)

by stochastic gradient descent. It is therefore necessary to provide LWPR with a large enough
number of training data, so that the algorithm can properly detect the local dimensionality
(number R of PLS projections) and the scale on which the regression function is locally linear.
If the training set is small, the samples need to be presented to LWPR multiple times in random
order.

2 When to use LWPR (and when not)

LWPR is particularly suited for the following regression problems:

• The function to be learnt is non-linear. Otherwise having multiple local models is a waste
of resources, and you should rather use ordinary linear regression, or partial least squares
(PLS) for the case of high-dimensional or irrelevant inputs.

• There are large amounts of training data. If you desire good generalization from only
relatively few samples (say, less than 2000), you are probably better off with Gaussian
Processes (GP).

• Your application requires incremental, online training. If you can afford to collect the
data beforehand, and the time required for batch learning is not critical, LWPR loses its
edge against SVM regression, or (Sparse) GP regression. When compared to global func-
tion approximators like multi-layer neural networks, LWPR has the tremendous advantage
that its local models learn independently and without interference.

• The input space is high-dimensional, but the data lies on low-dimensional manifolds.
LWPR places local models only where they are needed, and can detect the local dimen-
sionality through PLS, yielding robust estimates of the regression coefficients. The latter
feature sets off LWPR against previous (but otherwise similar) algorithms as Receptive
Field Weighted Regression.

• The model may require adaptation, since the target mapping may change over time.
This suits LWPR very well because a built-in forgetting factor can be tuned to match the
expected time scale at which such changes occur. The adaptation then usually happens
quite fast, since the overall placement of receptive fields, their size, and the local PLS
directions of a well-trained model can often be kept, while the regression parameters β get
re-adjusted.

3 How to use LWPR

Despite all the nice properties and the efficiency of LWPR, applying the algorithm to a complex
learning task – in a way that a good learning performance is achieved – can be quite involved.
While we put a lot of effort into selecting reasonable defaults for all the learning parameters,
there are still some parameters that need to be tuned to the task at hand. Probably the
most important parameter is init D, the distance metric assigned initially to newly created local
models, which is also tightly connected to the normalisation of the input data (norm in). For
tuning this parameter, you should consider the following rule of thumb:

2

• Collect a batch set of training data. This does not need to cover the complete range of
data you expect, but it should be a “typical” subset. Split this into a training and a test
set.

• Set the input normalization (norm in) to the expected range of the input data – do not
“blindly” normalize by the standard deviation in each direction of the input space.

• Fit an LWPR model to the training set, starting with fixed distance metrics (update D=0)
and rather wide (spherical) distance metrics, that is, set init D to rI, where r is small (e.g.,
0.05).

• Check the prediction performance on the test set, and retrain the model with an increased
r (yielding smaller receptive fields) until you get a satisfying performance.

• Once you have a good init D, enable distance metric adaptation (set updata D=1). Option-
ally, tune the learning rate init alpha. For this please see the description of that parameter
on page 4.

• Hint: If you know that the target function is linear in a certain subset of the inputs1, you
can try keeping the corresponding diagonal elements of init D at very small values.

4 Top-level elements of the LWPR model

4.1 Basic elements

nIn (integer)

Number of input dimensions. Must be specified when creating a new model.

nOut (integer)

Number of output dimensions. Must be specified when creating a new model.

name (string)

Optional description string.

Tune ! norm in (double vector, N)

Component-wise input normalization factors useful for making the inputs dimensionless. In
general, it is dangerous to divide each dimension by its variance without considering the
physical properties of the input values since some input dimensions may be actually moving
very little relative to its range. Ideally, one should know the range of possible inputs in
each dimension and try to normalize each input by that. Note also that distances between
receptive fields and input data are calculated after the normalization, that is, norm in and
init D are closely connected tuning parameters.

norm out (double vector, Nout)

Component-wise output normalization factors useful for making the outputs dimensionless.
Since in the current implementation of LWPR all output dimensions are learned separately,
tuning of this parameter has only little effect.

kernel (string or enum’ed constants, either Gaussian (default) or BiSquare)

This field determines which locality kernel should be used as the receptive fields’ activation
function. The Bisquare kernel might yield some gaim in computational efficiency, but as long
as non-zero cutoff values are use the difference should be negligible.
1this is often the case for learning forward dynamics of torque-controlled robot arms

3

4.2 Elements related to distance metrics

diag only (boolean flag, default = True)

If this flag is True, the distance metric and all related quantites (e.g., memory terms, learning
rates, . . .) are treated as diagonal matrices. This usually yields a big speed-up especially
in higher dimensions. However, using diagonal distance metrics might not be sufficient for
complicated learning problems. As a general rule, try learning with diag only=1 first.

update D (boolean flag, default = True)

This flag determines whether the distances metrics of receptive fields are updated or kept
fixed. The latter is faster, but learning performance depends completely on a suitable choice
of init D.

Tune ! init alpha (double matrix, N ×N)

Component-wise distance metric learning rate initialization for gradient descent. If you see
instability in convergence, you have too large a learning rate. If the MSE is decreasing but
the convergence is slow, you might try increasing the learning rate. In theory, using meta
learning meta=1 should alleviate the need to tune this parameter.

meta (boolean flag, default = False)

If this flag is True, updates to the distances metrics use second order adaptation of learning
rates by the Incremental Delta Bar Delta (IDBD) algorithm. This is slightly more expensive,
but usually results in a better (at least faster) adaptation of the local models to the data.

meta rate (double)

Second order learning rate, i.e. the rate that governs the step size of changes to the distance
metrics. Default value = 250.0

Tune ! penalty (double)

Multiplication factor γ for the regularization penalty term in the optimization functional
(2). Larger values enforce smaller distance metrics, corresponding too wider receptive fields,
which in turn implies smoother functions.

Tune ! init D (double matrix, N ×N)

Initial distance metric (must be symmetric positive definite) assigned to newly created recep-
tive fields. The distance metric automatically adjusts itself if the distance metric learning is
enabled update D=1. However, convergence properties and speed are strongly dependent on
a good initialization. What can bad choices do:

• Too small value of D (large receptive fields) can lead to local minima and delay conver-
gence

• Too large value of D (small receptive fields) can lead to allocation of too many receptive
fields and overfitting

Theoretically, the learning mechanism takes care of thes problems, but there is nothing
like a good initialization to make things easier for the algorithm! One way of guessing a
good initialization is to guess the Hessian of the function being approximated and put a
conservatively big initialization of receptive field based on the curvature.

init M (double matrix, N ×N)

Cholesky factors of initial distance metric init D. This is automatically calculated when you
modify init D. You should not tweak this field directly.

4

4.3 Elements controlling the local regression

w gen (double, default = 0.1)

Weight activation threshold. A new local model is generated if no existing model elicits
response (activation) greater than w gen for a training sample.

w prune (double, default = 0.9)

If a training sample elicits responses greater than w prune from 2 local models, then the one
with the smaller receptive field, that is, the one with the larger Frobenius norm of its distance
metric, is pruned.

init S2 (double, default = 10−10)

Initial value for the covariance computation of the data (receptive field element SSs2), useful
to handle the case when no data has been seen so far.

add threshold (double, default = 0.5)

The mean squared error of the current regression dimension is compared against the previous
one. Only if the ratio of nMSE[R]

nMSE[R−1] < add threshold, a new regression direction is added. The
criterion is used in conjunction with some other checks to ensure that the decision is based
on enough data support. See also Section 6.2.

init lambda (double, default = 0.999)

Initial forgetting factor.

final lambda (double, default = 0.99999)

Final forgetting factor.

tau lambda (double, default = 0.9999)

Annealing constant for the forgetting factor.

4.4 Read-only elements for inspection

n data (integer)

Number of samples the LWPR model has been trained on so far.

mean x (double vector, N ×N)

Mean of all input training data.

var x (double vector, N ×N)

Variance of all input training data.

5 Elements of a Receptive Field

The following elements are ordered alphabetically. You should not modify any of them by hand,
but rather treat them as read-only variables for inspection purposes.

alpha (double matrix, N ×N)

Learning rates for updates to M. When using meta learning, this field itself gets updated
using Incremental Delta Bar Delta (IDBD). Initially it is set to model.init alpha.

b (double matrix, N ×N)

Memory terms for 2nd order updates to M, as part of the IDBD algorithm.

5

beta (double vector, R)

PLS regression coefficients as used in (1). These get calculated from sufficient statistics
SSYres.

beta 0 (double)

Intercept (or offset) of the local linear model, corresponding to β0 in (1). This parameter is
simply estimated as the weighted mean of all output data the receptive fields is trained on.

c (double vector, N)

Center of the receptive field. This vector is set to the current training input x when a
new receptive field is created. It is not modified afterwards (independence property of local
learning).

D (double matrix, N ×N)

Distance metric of the receptive field. Gets updated through its Cholesky decomposition M.
When a new receptive field is created, its distance metric is set either to the model.init D, or
the distance metric of the closest existing receptive field.

H (double vector, R)

Sufficient statistics for distance metric updates.

h (double matrix, N ×N)

Sufficient statistics for 2nd order distance metric updates, part of IDBD.

lambda (double vector, R)

Forgetting factor for each PLS direction.

M (double matrix, N ×N)

Cholesky decomposition of the distance metric D. If model.update D is non-zero, then this
field gets updated by gradient descent, or – if also meta learning is active (model.meta) – by
the Incremental Delta Bar Delta algorithm.

mean x (double vector, N)

Weighted mean of the training data this RF has seen.

n data (double vector, R)

Weighted number of training data each PLS direction has seen.

P (double matrix, N ×R)

PLS projection axes (R vectors of length N), gets calculated from SSXres.

r (double vector, R)

Sufficient statistics for distance metric updates.

s (double vector, R)

Current PLS loadings.

SSp (double)

Sufficient statistics used for calculating confidence bounds.

SSs2 (double vector, R)

Accumulated statistics (covariance) of PLS factor loadings s.

SSXres (double matrix, N ×R)

6

Sufficient statistics for the PLS projection axes P.

SSYres (double matrix, N ×R)

Contains sufficient statistics for the PLS regression axes U.

sum e2 (double)

This field holds the accumulated prediction error on the training data, in its non-cross-
validated form.

sum e cv2 (double vector, R)

Accumulated CV-error on training data.

sum w (double vector, R)

Accumulated activation w per PLS direction.

SXresYres (double matrix, N ×R)

Contains sufficient statistics for the PLS regression axes U.

trustworthy (boolean flag)

This field reports whether a receptive field has “seen” enough training data so that predictions
from it can be trusted. In the current implementation the correspong threshold for the
weighted number of data (n data) is set to 2N , where N is the input dimensionality.

U (double matrix, N ×R)

PLS regression axes (R vectors of length N), gets calculated from SXresYres by normalizing
the columns to unit-length.

var x (double vector, N)

Weighted variance of the training data this RF has seen.

6 Heuristics and numerical safety measures

This section lists the strategies and heuristics employed to make the LWPR algorithm more
robust against both ill-conditioned learnings tasks and numerical problems. The code snippets
below are taken from the Matlab implementation.

6.1 Initialisation of receptive fields

• SSs2 is set to the initial variance given by init S2 (= 10−10 by default).

• sum w is set to 10−10.

• n data is set to 10−10.

6.2 Check whether to add a new PLS projection

mse_n_reg = rf.sum_e_cv2(n_reg) / rf.sum_w(n_reg) + 1.e-10;
mse_n_reg_1 = rf.sum_e_cv2(n_reg-1)/ rf.sum_w(n_reg-1) + 1.e-10;

The above lines calculate a mean squared error (cross-validated) statistics for the two latest PLS
projections. The error is weighted by the accumulated activations. A small value is added to
prevent division by zero in the following if-clause:

7

if (mse_n_reg/mse_n_reg_1 < model.add_threshold & ...
rf.n_data(n_reg)/rf.n_data(1) > 0.99 & ...
rf.n_data(n_reg)*(1-rf.lambda(n_reg)) > 0.5),

⇒ A new PLS projection is added

• if the quotient of the error statistics is below a threshold, indicating that the latest PLS
projection significantly contributes to the prediction accuracy, and

• if the latest PLS projection has already seen 99% of the data the receptive field has seen
and

• if the latest PLS projection has seen sufficient data, as determined by n > 0.5
1−λ .

6.3 Adding a new PLS projection

• SSs2 is set to an initial variance of init S2 (= 10−10 by default).

• sum w is set to 10−10.

• n data is set to 0. This is in contrast to the initialisation of a new RF (see above), but
still ok, since only the first element of n data is used in divisions.

6.4 Updates to the regression parameters

• Sufficient statistics for the PLS projections U, i.e. SXresYres, get multiplied by lambda slow =
1.0−(1.0−lambda)/10, but sufficient statistics for the residuals SXres and SYres are mul-
tiplied by the normal lambda.

• Sufficient statistics for confidence bounds (SSp) are updated with the squared activation
w2 instead of w.

• Accumulated errors and CV-errors are only updated if “sufficient data” has been seen:

if rf.n_data(1) > 0.1./(1.-rf.lambda(1))
rf.sum_e_cv2 = rf.sum_e_cv2.*rf.lambda + w*e_cv.^2;
rf.sum_e2 = rf.sum_e2*rf.lambda(end) + w*e^2;

end

Note that the condition is different from the check for a new PLS projection. sum e2 is
only used for calculating a transient multiplier, which acts as an additional learning rate
for distance metric updates.

6.5 Distance metric updates

• An update is only performed if the RF has seen sufficient data. The condition is the same
as for the (CV-)error accumulation (see above).

• A transient multiplier gets computed by
(
sum e2/(sum e cv2(end) + 10−10)

)4
. This

serves as an additional factor in the learning rate.

• In meta (second order) updates, the parameter b is clipped to [−10; 10], and updates to b
are clipped to [−0.1; 0.1].

• Updates to M, that is, elements of ∆M, are compared against 0.1max(M). If any element
∆mij is larger, the learning rate αij is divided by 2, and no update is performed for this
element.

8

• The memory term r gets updated with a term proportional to the squared activation w2

instead of w.

6.6 Predictions

• Depending on the parameter cutoff, only receptive fields with sufficient activation con-
tribute to the prediction. This is mainly for speeding up predictions.

• Furthermore, only trustworthy receptive fields contribute, that is, receptive fields having
seen more than 2N training samples.

6.7 Updating receptive fields

• Only receptive fields with sufficient activation, w > 0.001 are updated.

6.8 Adding and pruning receptive fields

• Creation of a new RF depends on the threshold parameter w gen. If the currently most
active RF is trustworthy and has “reasonable” activation, it is used as a template.

if (wv(3) <= model.w_gen)
if (wv(3) > 0.1*model.w_gen & sub.rfs(iv(3)).trustworthy)

sub.rfs(numrfs+1) = lwpr_x_init_rf(model, sub.rfs(iv(3)), xn, yn);
else

sub.rfs(numrfs+1) = lwpr_x_init_rf(model, [], xn, yn);
end

end

• If two receptive fields have activation w > w prune, one of them is removed. The selection
criterion in this case is the width of the kernel, which in this implementation is measured
by the trace (= sum of eigenvalues) of D.

References

[1] S. Vijayakumar, A. D’Souza, and S. Schaal. Incremental online learning in high dimensions.
Neural Computation, 17:2602–2634, 2005.

9

