
Locally Weighted Projection Regression : An O(n) Algorithm for Incremental
Real Time Learning in High Dimensional Space

Sethu Vijayakumar SETHU@USC.EDU

Stefan Schaal SSCHAAL@USC.EDU

Dept. of Computer Science & Neuroscience and Kawato Dynamic Brain Project
HEDCO Neuroscience Bldg HNB 103, University of Southern California, Los Angeles, CA 90089-2520, USA

Abstract

Locally weighted projection regression is a new
algorithm that achieves nonlinear function ap-
proximation in high dimensional spaces with re-
dundant and irrelevant input dimensions. At its
core, it uses locally linear models, spanned by
a small number of univariate regressions in se-
lected directions in input space. This paper eval-
uates different methods of projection regression
and derives a nonlinear function approximator
based on them. This nonparametric local learn-
ing system i) learns rapidly with second order
learning methods based on incremental training,
ii) uses statistically sound stochastic cross vali-
dation to learn iii) adjusts its weighting kernels
based on local information only, iv) has a com-
putational complexity that is linear in the number
of inputs, and v) can deal with a large number of
- possibly redundant - inputs, as shown in evalua-
tions with up to 50 dimensional data sets. To our
knowledge, this is the first truly incremental spa-
tially localized learning method to combine all
these properties.

1. Introduction

Nonlinear function approximation with high dimensional
input data remains a nontrivial problem. An ideal algorithm
for such tasks needs to eliminate redundancy in the input
data, detect irrelevant input dimensions, keep the compu-
tational complexity low, and, of course, achieve accurate
function approximation and generalization. A route to ac-
complish these goals can be sought in techniques of pro-
jection regression. Projection Regression(PR) copes with
high dimensional inputs by decomposing multivariate re-
gressions into a superposition of single variate regressions
along particular projections in input space. The major dif-
ficulty of PR lies in how to select efficient projections, i.e.,
how to achieve the best fitting result with as few as possible

one dimensional regressions.

Previous work has focused on finding good global pro-
jections for fitting nonlinear one-dimensional functions.
Among the best known algorithms is projection pursuit re-
gression (Friedman & Stutzle, 1981), and its generalization
in form of Generalized Additive Models (Hastie & Tibshi-
rani, 1990). Sigmoidal neural networks can equally be con-
ceived of as a method of projection regression, in particu-
lar when new projections are added sequentially, e.g., as in
Cascade Correlation (Fahlman & Lebiere, 1990).

In this paper we suggest an alternative method of projection
regression, focusing on finding efficient local projections.
Local projections can be used to accomplish local func-
tion approximation in the neighborhood of a given query
point. Such methods allow to fit locally simple functions,
e.g., low order polynomials, along the projection, which
greatly simplifies the function approximation problem. Lo-
cal projection regression can thus borrow most of its statis-
tical properties from the well established methods of locally
weighted learning and nonparametric regression (Hastie &
Loader, 1993; Atkeson, Moore & Schaal, 1997). Counter-
intuitive to the curse of dimensionality (Scott, 1992), local
regression methods can work successfully in high dimen-
sional spaces as shown in a recent work (Vijayakumar &
Schaal, 1998). In the above work, using techniques of prin-
cipal component regression (Schaal, Vijayakumar & Atke-
son, 1998), the observation that globally high dimensional
movement data usually lie on locally low dimensional dis-
tributions was exploited. However, principal component
regression does not address an efficient selection of local
projections, nor is it well suited to detect irrelevant input di-
mensions. This paper will explore methods that can remedy
these shortcoming. We will introduce a novel algorithm,
covariance projection regression, that generalizes princi-
pal component regression to a family of algorithms capa-
ble of discovering efficient projections for locally weighted
linear regression and compare it to partial least squares
regression–one of the most successful global linear projec-
tion regression methods. Empirical evaluations highlight

Sethu Vijayakumar
Proc. of Seventeenth International Conference on Machine Learning (ICML2000) , pp.1079-1086 (2000)

Sethu Vijayakumar

Table 1. Pseudocode implementation of PLS, PCR and CPR projection regression

PLS/PCR/CPR Pseudocode

1. Initialize: Å F $ M � Å , Æ F $ M � Æ
2. for � � @

to � do

(a) Å Ç � Å F $ M § , where § is a diagonal weight matrix.
(b) If [PLS]: �

D
� Å 4 Ç Æ F $ M

. If [PCR/CPR]: �
D

� e H � É H � Ë H + Ì Í ' � Å 4 Ç Å Ç � h Î Ð Ò
.

(c)
� D

� Ó 4
D

Æ F $ M � � Ó 4
D

Ó
D �

where Ó
D

� Å F $ M �
D
.

(d) Æ F $ M � Æ F $ M ; Ó
D � D

.
(e) Å F $ M � Å F $ M ; Ó

D
�

D
4 where �

D
� Å 4 F $ M Ó

D � � Ó 4
D

Ó
D �

.

the pros and cons of the different methods. Finally, we em-
bed one of the projection regression algorithms in an in-
cremental nonlinear function approximation (Vijayakumar
& Schaal, 1998). In several evaluations, the resulting in-
cremental learning system demonstrates high accuracy for
function fitting in high dimensional spaces, robustness to-
wards irrelevant inputs, as well as low computational com-
plexity.

2. Linear Projection Regression for
Dimensionality Reduction

In this section we will outline several PR algorithms that fit
linear functions along the individual projections. Later, by
spatially localizing these algorithms, they can serve as the
core of nonlinear function approximation techniques. We
assume that our data is generated by the standard linear re-
gression model

� � � � V Õ , where
�

is a vector of input
variables and

�
is the scalar, mean-zero noise contaminated

output. Without loss of generality, both inputs and output
are assumed to be mean zero. For notational convenience,
all input vectors are summarized in the rows of the matrix
X=[

� 9 � � ...
� B h 4 and the corresponding outputs are the el-

ements of the vector y. � is the number of training data
and

�
is the dimensionality of the input data. All the PR

techniques considered here project the input data Å onto� orthogonal directions � 9 � � � � � �
G

along which they carry
out univariate linear regressions - hence, the name projec-
tion regression. If the linear model of the data was known,
it would be straightforward to determine the optimal pro-
jection direction: it is given by the vector of regression co-
efficients

�
, i.e., the gradient; along this direction, a single

univariate regression would suffice to obtain an optimal re-
gression result.

2.1 Partial Least Squares

Partial least squares (PLS) (Wold, 1975; Frank & Friedman,
1993), a technique extensively used in chemometrics, re-

cursively computes orthogonal projections of the input data
and performs single variable regressions along these projec-
tions on the residuals of the previous iteration step. Table 1
illustrates PLS in a pseudocode implementation. It should
be noted that for PLS, the matrix § in step 2a of the algo-
rithm needs to be the identity matrix. The key ingredient in
PLS is to use the direction of maximal correlation between
the residual error and the input data as the projection direc-
tion at every regression step. Additionally, PLS regresses
the inputs of the previous step against the projected inputsÓ in order to ensure the orthogonality of all the projections� (Step 2d,2e). Actually, this additional regression could
be avoided by replacing � with � in Step 2e, similar to tech-
niques used in principal component analysis(Sanger, 1989).
However, using this regression step leads to better perfor-
mance of the algorithm. This effect is due to the fact that
PLS chooses the most effective projections if the input data
has a spherical distribution: with only one projection, PLS
will find the direction of the gradient and achieve optimal
regression results. The regression step in 2e modifies the
input data Å F $ M

such that each resulting data vectors have
coefficients of minimal magnitude and, hence, push the dis-
tribution of Å F $ M

to become more spherical.

2.2 Principal Component Regression

A computationally efficient technique of dimensionality re-
duction for linear regression is Principal Component Re-
gression (PCR) (Massy, 1965; Vijayakumar & Schaal,
1998). PCR projects the input data onto its principal com-
ponents and performs univariate regressions in these direc-
tions. Only those � principal components are used that
correspond to the largest eigenvalues of the input covari-
ance matrix. The algorithm for PCR is almost identical to
PLS, with § again being the identity matrix. Only Step
2b in Table 1 is different, but this difference is essential.
PCR chooses projection � solely based on the input distri-
bution. Although this can be interpreted as a method that
maximizes the confidence in the univariate regressions, it

is prone to choose quite inefficient projections.

2.3 Covariant Projection Regression

In this section, we introduce a new algorithm which has
the flavour of both PCR and PLS. Covariant Projection Re-
gression(CPR) transforms the input data in Step 2a (Table
1) by a (diagonal) weight matrix § with the goal to elon-
gate the distribution in the direction of the gradient of the
input/output relation of the data. Subsequently, the major
principal component of this deformed distribution is cho-
sen as the direction of a univariate regression (Step 2b). In
contrast to PCR, this projection now reflects not only the in-
fluence of the input distribution but also that of the regres-
sion outputs. As in PLS, if the input distribution is spheri-
cal, CPR will obtain an optimal regression result with a sin-
gle univariate fit, irrespective of the actual input dimension-
ality.

CPR is actually a family of algorithms depending on how
the weights in § are chosen. Here, we consider two such
options:

Weighting scheme CPR1: ¨ © ª F 9D D
� 9¬ ® ¯ ° � ± ² ® ¯ ° R S ±³ ´ ® ¯ ° R S ³ � ª .

See Fig.1(a).

Weighting scheme CPR2: ¨ © ª F �D D
� 9³ ´ ® ¯ ° R S ³ � ± ² ® ¯ ° R S ±³ ´ ® ¯ ° R S ³ � ª .

See Fig.1(b).

CPR1 spheres the input data and then weights it by the
“slope” of each data point, taken to the power ¡ for increas-
ing the impact of the input/output relationships. CPR2 is a
variant that, although a bit idiosyncratic, had the best av-
erage performance in practice: CPR2 first maps the input
data onto a unit-(hyper)sphere, and then stretches the dis-
tribution along the direction of maximal slope, i.e., the re-
gression direction (Fig.1) – this method is fairly insensitive
to noise in the input data. Fig.1 shows the effect of trans-
forming a gaussian input distributionby the CPR weighting
schemes. Additionally, the figure also compares the regres-
sion gradient against the projection direction extracted by
CPR. As can be seen, for gaussian distributions CPR finds
the optimal projection direction with a single projection.

2.4 Monte Carlo evaluations for performance
comparison

In order to evaluate the candidate methods, linear data sets,
consisting of 1000 training points and 2000 test points,
with 5 input dimension and 1 output were generated at ran-
dom. The outputs were calculated from random linear co-
efficients, and gaussian noise was added. Then, the input
data was augmented with 5 additional constant dimensions
and rotated and stretched to have random variances in all
dimensions. For some test cases, 5 more input dimensions

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x1

x2

 CPR1 projection vs Regression direction

input distribution
regression direction
transformed data
CPR1 projection direction

(a)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x1

x2

 CPR2 projection vs Regression direction

input distribution
regression direction
transformed data
CPR2 projection direction

(b)

Figure 1. CPR projection under two different weighting schemes

with random noise was added afterwards to explore the ef-
fect of irrelevant inputs on the regression performance. Em-
pirically, we determined ¡ � �

as a good choice for CPR.

The simulations considered the following permutations:
1. Low noise 1 (¶ t =0.99) and High noise (¶ t k r z ·) in

output data.
2. With and without irrelevant (non-constant) input di-

mensions.
Each algorithm was run 100 times on random data sets of
each of the 4 combinations of test conditions. Results were

1Noise is parametrised by the coefficient of determination (¶ t).
We add noise scaled to the output variance, i.e. ¸ ¹ º » ¼ ½ k ¾ z ¸ À ,
where ¾ k Á uÂ t o p z The best normalized mean squared error
(nMSE) achievable by a learning system under this noise level isp o ¶ t .

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

n
M

S
E

(b) Regression results using three projections (#proj =3)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
n

M
S

E

(a) Regression results using one projection (#proj=1)

PCR PLS CPR1 CPR2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

n
M

S
E

(c) Regression results using five projections (#proj=5)

Low noise High noise Low noise &
irrelevant dim.

High noise &
irrelevant dim.

Figure 2. Simulation Results for PCR/PLS/CPR1/CPR2. The
subplots show results for projection dimensions 1, 3 and 5. Each
of the subplots have four additional conditions made of permu-
tations of : (i) low and high noise (ii) With and without irrele-
vant(non constant) inputs.

compiled such that the number of projection dimensions �
employed by the methods varied from one to five. Fig.2
show the summary results.

It can be seen that on average the PLS and CPR methods
outperform the PCR methods by a large margin, even more
in the case when irrelevant inputs were included. This can
be attributed to the fact that PCR’s projections solely rely
on the input distributions. In cases where irrelevant in-
puts have high variance, PCR will thus choose inappropri-
ate projection directions. For low noise cases (' � � � � � �

),
CPR performs marginally better than PLS, especially dur-
ing the first projections. For high noise cases (' � � � � �

),
PLS seems be slightly better. Amongst the CPR candidates,
CPR2 seems to have a slight advantage over CPR1 in low
noise cases, while the advantage is flipped with larger noise.
Summarizing, it can be said that CPR and PLS both perform
very well. In contrast to PCR, they accomplish excellent re-
gression results with relatively few projections since their

choice of projections does not just try to span the input dis-
tribution but rather the gradient of the data.

3. Locally Weighted Projection Regression

Going from linear regression to nonlinear regression can
be accomplished by localizing the linear regressions (Vi-
jayakumar & Schaal, 1998; Atkeson, Moore & Schaal,
1997). The key concept here is to approximate nonlinear
functions by means of piecewise linear models. Of course,
in addition to learning the local linear regression, we must
also determine the locality of the particular linear model
from the data.

3.1 The LWPR network

In this section, we briefly outline the schematic layout of
the LWPR learning mechanism. Fig. 3.1 shows the asso-
ciated local units and the inputs which feed into it. Here, a
weighting kernel (determining the locality) is defined that
computes a weight ! G L D

for each data point
� � D � � D �

accord-
ing to the distance from the center

G
of the kernel in each

local unit. For a gaussian kernel, ! G L D
becomes

! G L D
� H - ¡ � ; @

) � � D ;
G � 4 �

G � � D ;
G � � �

(1)

where �
G

corresponds to a distance metric that determines
the size and shape of region of validity of the linear model.
Here we assume that there are ¢ local linear models com-
bining to make the prediction. Given an input vector

�
, each

linear model calculates a prediction
� G

. The total output of
the network is the weighted mean of all linear models:

£� � ¤ ¥
G E 9 ! G � G

¤ ¥
G E 9 ! G �

(2)

as shown in Fig. 3.1. The parameters that need to be
learned includes the dimensionality reducing transforma-
tion (or projection directions) �

D L G
, the local regression pa-

rameter
� D L G

and the distance metric /
G

for each local mod-
ule.

3.2 Learning the projection directions and local
regression

Previous work (Schaal & Atkeson, 1997) computed the
outputs of each linear model

� G
by traditional recursive

least squares regression over all the input variables. Learn-
ing in such a system, however, required more than ¦ � � � �
(where � is the number of input dimensions) computations
which became infeasible for more than 10 dimensional in-
put spaces. However, using the PLS/CPR framework, we
are able to reduce the computational burden in each local
linear model by applying a sequence of one-dimensional re-
gressions along selected projections � F in input space (note

Output

PLSui,k

x1

x2

x3
x4

xn

ytrainLearning Module Input

Dk

wk

yk
^

Xreg

βi,k

Σ

ŷ

Weighted
 Average

Receptive field
centered at ck

Inp
uts

Linear unit

Correlation Computation module

X in
pu

t

Figure 3. Information processing unit of LWPR

that we drop the index � from now on unless it is necessary
to distinguish explicitly between different linear models) as
shown in Table 1. The important ingredient of PLS is to
choose projections according to the correlation of the input
data with the output data. The Locally Weighted Projection
Regression (LWPR) algorithm, shown in Table 2, uses an
incremental locally weighted version of PLS to determine
the linear model parameters.

In Table 2, � c e � � @ h
is a forgetting factor that deter-

mines how much older data in the regression parameters
will be forgotten, as used in the recursive system identifica-
tion techniques (Ljung & Soderstrom, 1986). The variables� � , � � , and � � are memory terms that enable us to do the
univariate regression in step (f) in a recursive least squares
fashion, i.e., a fast Newton-like method. Step (g) regresses
the projection from the current projected data s and the cur-
rent input data � . This step guarantees that the next projec-
tion of the input data for the next univariate regression will
result in a �

D 8 9 that is orthogonal to �
D
. Thus, for ' � �

,
the entire input space would be spanned by the projections�

D
and the regression results would be identical to that of a

traditional linear regression. Once again, we emphasize the
important properties of the local projection scheme. First, if
all the input variables are statistically independent, PLS will
find the optimal projection direction �

D
in a single iteration

- here, the optimal projection direction corresponds to the
gradient of the assumed locally linear function to be approx-
imated. Second, choosing the projection direction from cor-
relating the input and the output data in Step (a) automati-
cally excludes irrelevant input dimensions, i.e., inputs that
do not contribute to the output. And third, there is no dan-

Incremental PLS Pseudocode

Given: A training point
� � � � �

.

Update the means of input and output:

� & 8 9� � � A & � & � V ! �A & 8 9
� & 8 9� � � A & � &� V ! �A & 8 9

where
A & 8 9 � � A & V ! and� �� � � , � �D

� � ,
� �� � �

,
A � � �

Update the local model:

1. Initialize: � � �
, ' H J 9 � � ; � & 8 9�

2. For � � @ � '
(a) � & 8 9D

� � � &D V ! � ' H J
D

(b) J � � 4 � & 8 9D
(c) � � & 8 9D

� � � � &D
V ! J �

(d) � � & 8 9D
� � � � &D V ! J ' H J

D
(e) � � & 8 9D

� � � � &D
V ! � J

(f)
� & 8 9D

� � � & 8 9D �
� � & 8 9D

(g) � & 8 9D
� � � & 8 9D �

� � & 8 9D
(h) � � � ; J � & 8 9D
(i) ' H J

D 8 9 � ' H J
D ; J � & 8 9D

(j) � � � & 8 9D
� � � � � &D

V ! ' H J �D 8 9
Predicting with novel data:

Initialize:
� � � � � � � � ; � �

For i=1:k

1. J � � 4
D

�
2.

� � � V � D
J

3. � � � ; J � &D

Table 2. PLS Pseudocode

ger of numerical problems in PLS due to redundant input
dimensions as the univariate regressions will never be sin-
gular.

3.3 Learning the locality

So far, we have described the process of finding projection
directions and based on this, the local linear regression in
each local area. The validity of this local model and hence,
the size and shape of the receptive field is determined by the
distance metric � . It is possible to optimize the distance
metric � individually for each receptive field by using an
incremental gradient descent based on stochastic leave-one-
out cross validation criterion. The update rule can be writ-

LWPR outline� Initialize the LWPR with no receptive field (RF);� For every new training sample (x,y):

– For k=1 to RF: calculate the activation from eq.(1) update according to psuedocode of incremen-
tal PLS & Distance Metric update

– end
– If no linear model was activated by more than! " $ & ; create a new RF with ' �) , + � - , / �/ 1 $ 3
– end� end

Table 3. LWPR Outline

ten as :

� � � 4 � �
where 7 is upper triangular (3)

7 & 8 9 � 7 & ; < = ?= 7 (4)

where the cost function to be minimized is:

? � @A
BC D

E 9
FCG

E 9
! D

' H J �G 8 9 L D
� @ ; ! D M OQ R SM T Q U M Q � � V X

YCD L Z E 9 / �D Z �
(5)

The above update rules can be embedded in an incremental
learning system that automatically allocates new locally lin-
ear models as needed. An outline of the algorithm is shown
in Table 3.

In this pseudo-code algorithm, ! " $ & is a threshold that de-
termines when to create a new receptive field, and / 1 $ 3 is
the initial (usually diagonal) distance metric in eq.(1). The
initial number of projections is set to ' �) . The algorithm
has a simple mechanism of determining whether ' should be
increased by recursively keeping track of the mean- squared
error (MSE) as a function of the number of projections in-
cluded in a local model, i.e., Step (j) in the incremental PLS
psuedocode. If the MSE at the next projection does not de-
crease more than a certain percentage of the previous MSE,
i.e., � � �

D 8 9
� � �

D _ a �
(6)

where
a c e � � @ h

, the algorithm will stop adding new pro-
jections to the local model. For a diagonal distance metric� and under the assumption that the ' remains small, the

computational complexity of the update of all parameters
of LWPR is linear in the number of input dimensions.

3.4 Empirical Evaluations

We implemented LWPR similar to the development in (Vi-
jayakumar & Schaal, 1998). In each local model, the pro-
jection regressions are performed by (locally weighted)
PLS, and the distance metric � is learned by stochastic in-
cremental cross validation (Schaal & Atkeson, 1998); all
learning methods employed second order learning tech-
niques. As a first test, we ran LWPR on 500 noisy training
data drawn from the two dimensional functionj k max m exp n o p r s t u v w exp n o x r s tt w p z { x exp n o x n s t u } s tt v v v ~} N n r w r z r p v
shown in Fig.4(a). This kind of function with a spatial mix-
ture of strong non-linearities and significant linear regions
is an excellent test of the learning and generalization ca-
pability. Models with low complexity find it hard to cap-
ture the non-linearities while it is easy to overfit with more
complex models, especially in linear regions. A second test
added 8 constant dimensions to the inputs and rotated this
new input space by a random 10-dimensional rotation ma-
trix. A third test added another 10 input dimensions to the
inputs of the second test, each having

� � � � � � �
 � �
Gaus-

sian noise, thus obtaining a 20-dimensional input space.
The learning results with these data sets are illustrated in
Fig.4(c). In all three cases, LWPR reduced the normal-
ized mean squared error (thick lines) on a noiseless test set
rapidly in 10-20 epochs of training to less than � � � � �� � �

, and it converged to the excellent function approxima-
tion result of � � � � � � � � @

after 100,000 data presenta-
tions. Fig.4(b) illustrates the reconstruction of the original
function from the 20-dimensional test – an almost perfect
approximation. The rising thin lines in Fig.4(c) show the
number of local models that LWPR allocated during learn-
ing. The very thin lines at the bottom of the graph indicate
the average number of projections that the local models al-
located: the average remained at the initialization value of
two projections, as is appropriate for this originally two di-
mensional data set.

Previous work (Schaal & Atkeson, 1998) has quantita-
tively compared the performance of RFWR, a predecessor
of LWPR, to baseline techniques like sigmoidal neural net-
works as well as to more advanced techniques like the mix-
ture of experts systems of Jordan & Jacobs (Jacobs, 1991;
Jordan & Jacobs, 1994) and the Cascade correlation algo-
rithms (Fahlman & Lebiere, 1990). These results show that
RFWR is very competitive, outperforms most of these tech-
niques and is especially robust to non-static input distri-
butions and interference during learning. One must note
that stripping the LWPR algorithm of it’s dimensionality re-
duction preprocessing essentially gives us the RFWR algo-
rithm.

-1

0

1

-1
-0.5

0
0.5

1
-0.5

0

0.5

1

1.5

xy

z

(a)

-1

0

1

-1
-0.5

0
0.5

1
-0.5

0

0.5

1

1.5

xy

z

(b)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

10

20

30

40

50

60

70

1000 10000 100000

nM
S

E
 o

n
T

es
t S

et

#R
ec

ep
tiv

e
F

ie
ld

s
/ A

ve
ra

ge
 #

P
ro

je
ct

io
ns

#Training Data Points

2D-cross

10D-cross

20D-cross

(c)

Figure 4. (a) Target and (b) learned nonlinear cross function.(c)
Learning curves for 2-D, 10-D and 20-D data

In the second evaluation, we approximated the inverse dy-
namics model of a 7-degree-of-freedom anthropomorphic
robot arm (see Fig.5(a)) from a data set consisting of 45,000
data points, collected at 100Hz from the actual robot per-
forming various rhythmic and discrete movement tasks
(this corresponds to 7.5 minutes of data collection). The in-
verse dynamics model of the robot is strongly nonlinear due
to a vast amount of superpositions of sine and cosine func-
tions in robot dynamics. The data consisted of 21 input di-
mensions: 7 joint positions, velocities, and accelerations.
The goal of learning was to approximate the appropriate
torque command of one robot motor in response to the input
vector. To increase the difficulty of learning, we added 29
irrelevant dimensions to the inputs with

� � � � � � �
 � �
Gaus-

sian noise. 5,000 data points were excluded from the train-
ing data as a test set. Fig.5(b) shows the learning results in
comparison to two other state of the art techniques in this
field - parameter estimation based on Rigid Body Dynamic
models and Levenberg-Marquardt based Backpropogation
with sigmoidal neural networks. The parameter estimation
technique uses apriori knowledge about the analytical form
of the robot dynamics equations and that these equations
are linear in the unknown inertial and kinematic parame-
ters of the robot. Linear regression techniques with com-
plex analytical data preprocessing was used to obtain these
parameters, thus resulting in a complete analytical model
of the robot inverse dynamics. From the very beginning,
LWPR outperformed the global parameter estimation tech-
nique. Within 250,000 training presentations, LWPR con-
verged to the excellent result of � � � � � � � � �

. It em-
ployed an average of only 3.8 projection dimensions per lo-
cal model inspite of the input dimensionality of 50. Dur-
ing learning, the number of local models increased by a fac-
tor of 10 from about 50 initial models to about 400 mod-
els. This increase is due to the adjustment of the distance
metric � in eq.(1), which was initialized to form a very
large kernel. Since this large kernel over-smoothes the data,
LWPR reduced the kernel size, and in response more ker-
nels needed to be allocated. In comparison, the LM Back-
Prop method, which is computationally much more inten-
sive, achieved � � � � � � � �

, which is statistically sim-
ilar. However, as is evident from Fig.5(b), it took much
longer to converge to the optimal value compared to LWPR.
Once again, the key issue is that none of these compared al-
gorithms are incremental or online. We have not been able
to find another incremental, online algorithm in the litera-
ture which scales for the input dimensionality and redun-
dancy handled in the tasks here.

4. Discussion

This paper discussed methods of linear projection regres-
sion and how to use them in spatially localized nonlin-
ear function approximation for high-dimensional input data

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0

1

2

3

4

5

6

7

8

10000 100000 1000000 2500000

nM
S

E
 o

n
T

es
t S

et

R

ec
ep

tiv
e

F
ie

ld
s

Training Data Points

LWPR

LM Back Prop

Parameter Estimation

#Average LWPR Projection

(b)

Figure 5. (a) Sketch of the SARCOS dextrous arm (b) Learning
curves for 50 dimensional robot dynamics learning

that has redundant and irrelevant components. We derived a
family of linear projection regression methods that bridged
the gap between principal component regression, a com-
monly used algorithm with inferior performance, and par-
tial least squares regression, a less known algorithm with,
however, superior performance. Each of these algorithms
can be used at the core of nonparametric function approx-
imation with spatially localized weighting kernels. As an
example, we demonstrated how one nonlinear function ap-
proximator derived from this family leads to excellent func-
tion approximation results in up to 50 dimensional data sets.
Besides showing very fast and robust learning performance
due to second order learning methods based on stochastic
cross validation, the new algorithm excels by its low com-
putational complexity: updating one projection direction
has linear computational cost in the number of inputs, and
since the algorithm accomplishes good approximation re-
sults with only 3-4 projections irrespective of the number
of input dimensions, the overall computational complexity
remains linear in the inputs. To our knowledge, this is the
first spatially localized incremental learning system that can
efficiently work in high dimensional spaces.

References

[1] Atkeson,C., Moore,A. & Schaal,S. Locally weighted
learning. Artificial Intelligence Review, 11(4):76–113,
1997.

[2] Fahlman,S.E. & Lebiere.C. The cascade correlation
learning architecture. Advances in Neural Information
Processing Systems 2, 1990.

[3] Frank,I.E. &Friedman,J.H. A statistical view of
some chemometric regression tools. Technometrics,
35(2):109–135, 1993.

[4] Friedman,J.H. & Stutzle,W. Projection pursuit regres-
sion. Journal of the American Stat. Assoc., 76:817-
823(1981).

[5] Hastie,T. & Loader,C. Local regression: Automatic
kernel carpentry. Statistical Science, 8(2):120–143,
1993.

[6] Hastie,T.J. & Tibshirani,R.J. Generalized Additive
Models, Chapman & Hall, 1990.

[7] Jacobs,R.A., Jordan,M.I., Nowlan, S.J. & Hin-
ton,G.E. Adaptive mixture of local experts, Neural
Computation,3:79–87, 1991.

[8] Jordan,M.I. & Jacobs,R.A. Heirarchical mixture of
experts and the EM algorithm. Neural Computation,
6:181–214, 1994.

[9] Massy,W.F. Principal component regression in ex-
ploratory statistical research. Journal of Amer. Stat.
Assoc.,60:234–246, 1965.

[10] Sanger,T.D. Optimal unsupervised learning in a single
layer liner feedforward neural network, Neural Net-
works, 2:459–473, 1989.

[11] Scott,D.W. Multivariate Density Estimation, Wiley-
NY, 1992.

[12] Schaal,S. & Atkeson,C.G. Receptive Field Weighted
Regression, Technical Report TR-H-209, ATR Human
Information Processing Labs., Kyoto, Japan.

[13] Schaal,S. & Atkeson,C.G. Constructive Incremental
Learning from only Local Information. Neural Com-
putation, 10(8):2047–2084, 1998.

[14] Schaal,S., Vijayakumar,S. & Atkeson,C.G. Local Di-
mensionality Reduction. Advances in Neural Informa-
tion Processing Systems 10,633–639, 1998.

[15] Vijayakumar,S. & Schaal,S. Local Adaptive Subspace
Regression. Neural Processing Letters, 7(3):139–149,
1998.

[16] Wold,H. Soft modeling by latent variables: the non-
linear iterative partial least squares approach. Per-
spectives in Probability and Statistics, 1975.

[17] Ljung,L. & Soderstrom,T. Theory and practice of re-
cursive identification, Cambridge MIT Press,1986.

