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Abstract—We describe a hierarchical model of invariant visual ([14]"¢an explain the role" of ‘feedback connections in) the
pattern recognition in the visual cortex. In this model, the - _e in
knowledge of how patterns change when objects move is Iearned_-rhe

level of the hierarchy. Configuration of object parts is captured
by the patterns of coincident h|gh probabmty sequences. This we ConSIder that as the Star“ng pOInt Of the WOI‘k we desc”be

knowledge is then encoded in a highly efficient Bayesian Network here.

structure.The learning algorithm uses a temporal stability crite- _-tion
rion to discover object concepts and movement patterns. We ShOW—n 3

that the architecture and algorithms are biologically plausible. .
|SCHESRRGIRISeNls:. \n section 4 we describe how the
system performs invariant pattern recognition. In section’s w

| connect the architecture and algorithms to biology. In section

The system exhibits invariance across a wide variety of g e describe the simulation setup and performance results.

e o o ol E G o o e | Our model provides alterative explanations for some cortica

I. INTRODUCTION

Recognizing objects despite different scalings, rotations and
translations is something humans perform without conscious

effort, but this still is a hard problem for computer vision
algorithms. The system we describe here is organized in a hierarchy and

e S eSS ERERE s cor learning and recognition algorithms exploit this hierarchi-
G e GISRNRR <2 structure. Each level in our system hierarchy has several
e e SRS HlINCeKIAgNERN- modules These modules model cortical regions. A module
CE e iR EISeHiRmy <isn have several children and one parent. Thus the modules
itsalfe arranged in a tree structure. The bottom most level is
CIEREIRSNAgISE<. Rigid objects have the property that theglled levell and the level number increases as you go up
produce the same change of patterns for the same patterinathe hierarchy. Inputs go directly to the modules at lelel
motion. Rigid objects in this world can be thought of as th&he level 1 modules have smaé#ceptive fieldcompared to
underlying causes for persistent patterns on our retina. Thtle size of the total image, i.e., these modules receive their
learning persistent patterns on the retina would corresponditputs from a small patch of the visual field. Several such
learning objects in the visual world. Associating these patterlevel 1 modules tile the visual field, possibly with overlap.
with their causes corresponds to invariant pattern recognitioh.module at level2 is connected to several adjoining level

(In this model we use many concepts which are familiar modules below. Thus a level 2 module covers more of the
(and accepted in neuroscience and computer vision. It weisual field compared to a level 1 module. However, a level

known that the visual cortex is organized in a hierarchy module gets it information only through a level 1 module.
and (several ' models of invariant pattern recognition [6])[16This pattern is repeated in the hierarchy. Thus the receptive
(make use of this! Temporal'slowness has been'shown'to bieeld sizes increase as one goes up the hierarchy. The module
(plausible criterion for learning invariances [19] and our ideat the root of the tree covers the entire visual field, by pooling
of most likely sequences can be related to this. We derive daputs from its child module STREISEHOMIEVEIIROAUIES can
architecture and algorithms based on the idea (fhat'the JBaliconsideredianalogousionVINiheIsetioievelZimotules
of the cortex is to make predictions [7]. Predictive modelgnalogous to V2 and so on.

Il. ARCHITECTURE ANDASSUMPTIONS
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Fig. 1. Learning Stages: Learning starts at the bottom of the hierarchy and proceeds to the top. The modules at the very top of the hierarchy

receive their inputs from a small section of the visual field. During Stage 1, these modules observe their inputs in time andriezsn the

likely sequencesf a particular length of inputs. Once stage 1 learning is finished,these modules start passing up the index of the sequence

whenever they observe one of the most likely sequences at its inputs. A higher level module gets its inputs from several lower level modules.

During Stage 2, the higher level module le cepts for th
. Note that this alphabet abstracts what patterns occur together in space procedurfe,

context o

ts. Repeating this in a hierarchy we obtain a graphical model as shown in figure 1

[1l. L EARNING ALGORITHM number of such patterns by/. These patterns become the

We describe our learning algorithm taking a two levefiPhabet for this module.

hierarchical arrangement as shown in figure 1 as the example.

The inputs to the system are given to the modules at the bottor(ji iR ENEE < < o -
most level. Let the random variable prefk indicate all the (SEEKISTEEIEEEEEEEEEE < d
the inputs to level 1 moduleS: LERS"} ana (X} denote (ENEIONSRISTSEDESHSIEONEXOEIGHET- -

the sequence of inputs to modulesind2 in figure 1. @BBES. This stage is initiated once the level 2 module has
Learning in this model occurs in three stages. Duringrmed its alphabet” as we described above. Assume that
the first stage of learning, a module learns the most likelt a particular point in time the higher level pattérn= y;
sequences of its inputs. ngl) — Sg("jl), 55:‘2)’ . 75&’?}\[ is active. (This pattern was made active by the simultaneous
be the set of sequences of lengthith their fraction of occur- occurrence of 4 BIEIOIIONSEUNEHEESNNNONEIIEY 's).
rences greater thah A module learns this set empirically b_y IS

observing its sequence of inputs. Once a module has lea y the
13" any high probability sequence seen by this module canl6¥EI LModUIESTo0btaIN a conditional probability distribution
uniquely represented by its ind@into the set, . At the end '
of learning stage 1, a module has IearrBeg(‘J) and it produces
at its output the index of the high probability sequences t
it observes on its input.
A module enters the second stage of the learning proc
once its child modules have finished the first stage of learn
and is communicating with this module in terms of the indic >
of the high probability sequences of those modules. Lets
consider module numbérat the second level in figure (@he

(e Ce S CICoRCaENaieRIEMES out- The learning process defined above can be repeated in a
CIESEERIEREENRESEReE ~ particular concatenation hierarchy. This is done by considering the frequent spatial

represents a simultaneous occurrence of a combination of hggtterns seen by a module at any level to be the alphabet
probability sequences in the child modules. Depending on thé that region and then repeating stage 1, 2 and 3 of the
spatio-temporal statistics of the inputs seen by the lower levehrning algorithms in a manner identical to the description
modules, some of these coincidences will occur frequently aaldove. In our example, the learning can be continued between
some will not. During the second stage of learning, a pardevels 2 and 3 by considering the frequent spatial patt&rns
module learns the most frequent coincidences (accordingdbthe level 2 module as its alphabet and then learning the high
an e criterion) of sequences in the levels below it. We denofeobability sequences on this alphabet to continue to stages 2
the most frequent patterns at this level 2 modulérbgind the and 3 of the algorithm.

for module1 at level 1. This process is identical
alfFfe modules at level.
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has al [18]

to a large extent. Shown here is the cortical circuit resulting from
such a mapping. This mapping enabled us to replicate some of the
Fig. 2. Structure of a typical Bayesian Network obtained at thphysiological experiments in our system.

end of the learning procedure. The random variables at the bottom

level nodes correspond to quantizations of input patterns. The random
variables at intermediate levels reprehmove

. The random variables at the top node corres [13] to
to During training the definitions of the intermediate objeckhtain the most likely explanation given an image.

parts and then the top-level objects are obtained using algorithms

described in figure 1. The probability tables are also filled according
to Stage 3 of figure 1. V. CONNECTION TOBIOLOGY

It is well known that cortical system is organized in a

hierarchy an_lons

IV. RECOGNITION ASINFERENCEIN A BAYESIAN
NETWORK

Once all the modules in the hierarchy have learned 4gierarchy{It'is'generally accepted that neurons in the higher
cording to the algorithms described in sectionf8)iWe getlevel of the visual cortex represent more complex features with
tree structured Bayesian Network [13], an example of whigkeurons/columns in IT representing objects or object parts.
(is'shown in figure 2. The modules correspond to the nod&Belateral connections within layer 2-3 of the cortex'and the
in a probabilistic graphical model and each node storesCannections between layers 1,2 and 3 through the thalamus
(ConaitioRaINproBabIMEISHBUlGh. Every module can beould provide adequate mechanisms for learning of sequences
thought of as having a set of statéSHICISEDSIANERED n6de Thus the large scale organization of our system is in
e eSS SISMRED o v reement with the structure of the visual cortex.
given the state of its parent module. ‘We also found a fine mapping of these algorithms to the

If we assume that the learning algorithm has produc@iliCalcNaionyINEpDINoRNCIBayCsIENIECICHRIOPEg: i 0N
meaningful states at each module of the hierarchy with tfSEEMMEE) cquations to a neural instantiation. A cortical
states at the top of the hierarchy corresponding to objgegion can be thought of as encoding a set of concepts in

categories, the (iiiCHESooNCRIEEEERISERIEENEEH: o ratation to the concepts encoded in regions hierarchically
G SR ISElElsEl- s 2 bove it. The set of concepts encoded by a region can be
G oo RCRIEESIEREER: tteought of as a random variable. A cortical column represents
e ErISICSESE S CiCaI N - particular value of this random variable. At every time
GRS oSOt NCINeEEISIEES, (estant, the activity of a set of cells in a column represents
(e s CENN-® SSESelp: the probability that a particular hypothesis is active. The

iinstantiationsw* of the random variables such that feed forward and feed back connections to a cortical region
carry thel Belief Propagation messages. Observed information

“ @ anywhere in the cortex is propagated to other regions through
these messages and can alter the probability values associated
If Z is the random variable representing the states at the tojth the hypotheses maintained by other regions. Figure 3
of the hierarchy, then the category label that best explains astyows the detailed cortical micro-circuitry derived from BBP
given image is the index af*, wherez* is the assignment td  equations (liCEIcomeaRtcISoNSHoICUREEs the
which maximized the above equati ¢SSR s (HoNNEGGReaEaEglc) o a great extent. The BBP
(e s e RSN EIEREE  aeq uations that we used for deriving this micro-circuit is given
(e oS TNOEANESSAGES < sypart of the appendix.
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Recognition: Shown here are examples of test imag : ! . - The raw input (top left) is
that the system could recognize correctly along with their label$e"y Noisy and an immediate reconstruction using the information
hriith @ 4x4 window has all the features wrong (top right). The

termediate reconstruction (bottom left) is obtained by operating
th&ie belief propagation till the second level in the hierarchy and

The invariances developed in the system are the o passing the beliefs down to the lower level again. Thus the
t igtermediate level reconstruction the statistics of patterns in an 8x8

o wiich the System s exposed lo during the iaipiy hg§ ighborhood. The global reconstruction (bottom right) is obtained
ce. With eye-movements g/%doing the belief propagation globally. This reconstruction is
: &onsistent with the recognition of the input as a helicopter.

have a recognition accuracy of 97 percent for viewer drawn imag

b works well with very noisy input

of 10 time steps before changing directions. An object that
was picked remained in the field of view for at le@sttime
steps before a new object category was picked at random.
This way of simulating a movie gives us an infinitely long
input sequence to verify various performance aspects of the
algorithms described above. We describe the results of these
investigations in the following subsections.
All these simulations are based on a hierarchical arrange-
] ment of modules as described in section 2. The system
l consisted of 3 levels. The lowest level, level 1, consisted of
modules receiving inputs from a 4x4 patch of images. Sixty
four level 1 modules tiled an input image. Learning started
] B at L1 and proceeded to the higher levels. A level 2 module
received its inputs from 4 adjoining level 1 modules. There

i : . V\éere a total of 16 level 2 modules. A single level 3 module
Fig. 6. In this experiment we showed the system snapshots of ived all the inf ion f h level 2 dul

novel images at 10 randomly chosen positions. What is plotted "€C€IVED all the information from these level 2 modules.
the number of positions to which the system generalized for each pf . i s
these novel images (shown along the X axis). It can be seen that ‘@le Recognition, Prediction and Generalization

generalization performance goes down with increasing complexity of The full network was trained up according to the algorithm
GIETSE IR described in section 3. Recognition is performed according
to the inference procedure outlined in section 4. An input
image to be recognized is converted to uncertain evidence
using a hamming distance metric on each module (at the
We simulated the above algorithms for a data set of liflevel of 4x4 pixels) as described in section 4. Recognition is
drawing movies. These movies were created by simulatidgfined as obtaining t/{EiOSHIKCHICRDIGNEIONINI-E) of the
straight-line motions of line drawings of objects belongingvidence given the conditional probabilities that we learned
to 91 classes. There were 10 exemplar images of differamt the graph. We used Pearl’s Bayesian Belief Propagation
scales for each category. Each image was of size 32 pixelgorithm for inference [13].
by 32 pixels. The movies were created by picking a randomThe system exhibited robust recognition performance in-
category index and then moving the picture belonging to theariant to large scale changes, deformations, translations and
category in straight lines. Once a particular direction of motiamoise. Figure 4 shows examples of correctly recognized im-

was picked, the object moved in that direction for a minimurages fNGiENhatiSomeNcategoriesrarerrecognizeanirespective

o
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VI. SIMULATION SETUP AND RESULTS
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Our _model offers_an alternative explanation to this phenomenon
Fig. 7. 0]. Reduction in activity occurs

0

[9]. Here we shavecause incorporating global information narrows the hypotheses
the results of an experiment which demonstrates analogous reswdfmce maintained by a lower level region. In this experiment, we
lllusory contours are the result of the higher levels imposing itshowed our system a highly noisy picture dfelicopterand recorded
knowledge of higher level structures on to the lower levels. To tesste activity of the cells which represent the current belief in a
this we deleted a small portion of a familiar pattern and gave that estangular Levell(V1) region(pointed by the arrow). At= 0,

the input to the system. This pattern (an incomp#tis shown in the the input is highly ambiguous as shown and hence the belief of the
figure. We then recorded the activities of neurons in regions markesjion is highly spread out. At= 1 the level 2 regions integrate the

A and B as a function of time. The image is shown to the system iatormation from multiple level 1 regions and feed back information

t = 0. Neuron 15 in of region B shows a robust responseé at0 to level 1 regions. At = 2, the level 1 region uses this information
because this region receives a perfect input that is tuned to neutornupdate its belief. Figure shows that this reduces the spread of
15. Whereas, neuron 76 of region A does not show any responsehat belief as compared tb= 0. The corresponding picture of the
this time. At timet = 2 the information has propagated one level ufelicopter is the reconstruction at this stage if you take the best
and has propagated back down. This forces region A to changegdtsesses from all level 1 regions. At = 4, the level 1 regions
current belief about its state, thus increasing the activity of neuron %t feedback which incorporates the global information. This further
At t = 4, the global feedback information reaches all level 1 regionsarrows the posterior distribution. Note also that the reconstruction
and for region A, this increases the belief in neuron 76. Note that thethis point is the correct one.

pattern corresponding to neuron 76 correctly fills the missing portion

of the input pattern. Neuron 15 is an example of a neuron in region

A whose activity was not affected by the feedback informa At . .

er@fethose modules. Thus if a new pattern is to be learned, most

int. of the lower level connections do not need to be changed at
all for learning that pattern. Figure 6 shows the generalization
performance of the system in learning new patterns.

(CateGoiies AENEINEaISEaUENCESNNIGAIGBIANIIBIASS: porY!!- A LTERNATIVE EXPLANATIONS FOR BIOLOGICAL

PHENOMENA

_re@i&/en its own input and the contextual information from above.

hypotheses will vary in a random manner. Our system extibie found such neurons in our model using the anatomion!
this property and we used it to improve the signal to noise ragiSCHESeHBEHIMSERHED 5. Sce figure 7 for the results
during recognition. of our experiment.

A critical test for whether a system generalizes correctly (Functional'MRI'Studies [10] report that the perception of
would be to test whether it can correct noisy or missing inpué@ ebject’in the Infero’ Temporal cortex reduces the activity
using its knowledge about the statistics of patterns. We tesfadlower levels of the hierarchSICoNEISERENRE: in
this for our system and the results are shown in figure 5. (GHicECIEINEIEEIEI RS EnERe s

We also tested that our system generalizes well when trai (SlHONCHOMESIOPPOSCONOINCICUICHNSUDIECHORIRYED hcsis

on novel patterns. Generalization occurs in our system i@ See figure 8 for details.

to the hierarchy. Objects are made of the same lower level

components. After having seen many images, the lower levels VIII. DiscussioN

of the system have seen everything that is thexdficient (Invariant pattern recognition has been an area of ac-
statistig in the visual world at the spatial and temporal scald@/e’ research for a long time. Earlier efforts used only
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the spatial information in images to achieve invarian(s]
(representations[6][16][15]. However performance of these sys-

tems was limited and generalization questionSiEHNNEHERicve

EEEEREROANBESENEEMMEIR| (© capiure stuciure at'

multiple scales either in space or in tirflélSeveraliothermodels
[1], [12] attempt to solve the invariance problem by explicitly ¥

in a

applying different scalings, rotations and translations i
very efficient manne (IHOWEVERIASIOUFTESHEasESHintSe ctiany
4 indicate, none of the novel patterns we receive are

pure

scalings or translations of stored patterns.

In our current system, sequence information is used only

during the training stage to form concepts at intermedialfe!]

levels. Future work will include methods for preserving this

‘'sequence information so that the system can predict forware
in time. The current model deals only with the ventral visual

pathway of the cortex. Dealing with the dorsal pathway will
Tequire integrating motor information with visual information|13)

This is also part of future work.

(14]

mys) = Y Pluklz)my(2) (3)
BEL(yk) /\(yk) (yr) 4)
Ay (zm) = Z AY)P(ylzm) (5)
mx, k) = am(y) [T Ax. () (6)

i

(16]

(17]

(18]

(19]

These equations are specified with respect to a mod-

ule/region that encodes the random variableEquations 2 to

4 represent how the internal valuggy’), 7(Y) and BEL(Y)

are calculated from incoming messages and locally stored
probability tables. Equations 5 and 6 describe how to derive
the messages that are to be set as feed forward and feed back
outputs of this region. See [13] for more details on Belief

Propagation.
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