

Abstract—This paper explores the idea that robots can learn

safe behaviours by learning to reverse actions. Previously we
have demonstrated that obstacle avoidance behaviour emerges
when a robot learns to suppress irreversible actions and we
have also demonstrated emergence of territorial behaviour in
case of more complicated scenarios.

In this paper we represent comparative experiments with
two different robots to investigate if a code based on this
abstract principle is applicable on different robots with
different shape, size and polarity of proximity sensors in
different environments. Furthermore, we compare the
performance of the algorithm based on the reversibly of actions
to a dedicated Q-learning obstacle avoidance algorithm. The
experimental results show that the performance of the
algorithm is the same on both platforms and is 10% lower than
of Q-Learning algorithm. We interpret this as the evidence
confirming the hypothesis. We conclude that the reversibility
based algorithm can be used on different robotic platforms with
minor modifications to sensory-motor interface.

I.INTRODUCTION

This paper is concerned with safety of robot behaviour by
applying an abstract principle of reversibility on real robots.
In [1] we demonstrated that the principle “Don’t do things
you can’t undo” generates a concrete safe behaviour of
obstacle avoidance. We speculated further that this abstract
principle can be applied to different robots in different
environments. Furthermore we speculated that this principle
could generate variety of safe behaviours. In [2] we
demonstrated that a more complex territorial behaviour can
emerge as a result of avoiding irreversible sequences of
actions.

We speculate that a robot governed by such an abstract
principle will behave safely in a wide variety of
environments, since many undesirable actions such as
damage of the robot/environment or getting stuck is
characterized by irreversibility. Although not all irreversible
actions are undesirable, it is safe to say that all reversible
actions are safe.

Reversibility, or absence of irreversibility, is an extension
of stability in the way that reversibility can be task-specific:
positive changes after “good” actions will be identified as

 Manuscript received May 15, 2008.
 Yuri Gavshin, corresponding author, is with the Center for

Biorobotics, Tallinn University of Technology, Tallinn, Estonia; (e-mail:
yury@biorobotics.ttu.ee).

 Maarja Kruusmaa, is with the Center for Biorobotics, Tallinn
University of Technology, Tallinn, Estonia; (e-mail
maarja@biorobotics.ttu.ee).

non-stable, but reversible.
The idea of using abstract principles to govern robot

behaviour has already been studied before. Kaplan and
Oudeyer in [3] showed that a robot can develop visual
competences from scratch driven only by internal
motivations independent of any particular task:
predictability, familiarity and stability.

The main benefit of using the abstract principle, instead of
specific routines such as avoiding obstacles, falls, traps, risky
regions or routes or staying near some known landmark, is
its generality. It explains “why” a robot should behave that
way and if a new problematic action/situation occurs, a robot
avoiding irreversible actions will avoid these new dangers
after some learning period.

The main contribution of this article is a comparative test
to confirm/reject the hypothesis that the code based on this
abstract principle can be run without major changes on
different robots with different shape, size and polarity of
proximity sensors in different environments.

In the following section we present our ideas in a more
formal way. In section 3 we describe the experimental setup,
the algorithms used, explain the differences between the two
robots used in experiments, their test environments and
specific implementation details. In section 4 we present the
experimental results and discuss them together with
applicability of the concept of reversibility. In the last
section we make conclusions and speculate about some
possible directions of future work.

II.THEORETICAL FRAMEWORK

This section briefly describes the general theoretical
framework used to ground the reversibility based algorithm
and to test the robots. Emergence of obstacle avoidance
behaviour is also explained in the end of this section. The
reader is referred to [2] for more details.

A.Definitions

A robot’s world is a labelled transition system

()→Λ,,S , where S is a set of experienced states, Λ is a

set of labels (a label contains an action or a sequence of
actions), and → is a set of labelled transitions between the
states. When the result of an action a in state s is not
wholly determined by the robot, multiple transitions from s
are labelled with the same action a and it is the world that
determines which transition actually happens.

A reversibility for world W is a quintuple of three states

and two actions: ()21100 ,,,, sasas . Generally speaking, a

Yuri Gavshin, Maarja Kruusmaa

Comparative experiments on the emergence of safe behaviours

composite action 10aa produces a transition from 0s to 2s

through 1s in W . Also, the action sequence 10aa is

expected to work for any states x and y with

() origorig sxd ε≤0, and () destdest syd ε≤1, , where origd ,

destd are metrics on states and origε , destε are their

thresholds.

The reversibility ()21100 ,,,, sasas holds in W if there

exists a transition path from 0s to 2s through 1s consisting

of two transitions labelled accordingly 0a and 1a , and

() revrev ssd ε≤20, , where revd is a prametric

(() 0, ≥yxd rev and () 0, =xxd rev) on states and revε is

a threshold; fails otherwise.

An action 0a in an arbitrary state s is expected to be

reversible (by action 1a), if the reversibility

()21100 ,,,, sasas holds and () origorig ssd ε≤0, .

A reversibility model of the robot is a set of
reversibilities that are expected to hold.

B.Explanations

A reversibility model can be given to the robot in advance,
transferred from another robot, extracted by a human from
the knowledge about the world or learned by the robot.
Using this model a robot can predict whether the action from
the state is reversible by iterating through its experience and
using obtained reversibilities to ground the predictions.

The actions used are symbolic actions and it is irrelevant
whether they are atomic or complex actions. These actions
can also be interpreted as discrete choices if used by a high
level symbolic decision maker. The only requirement is that
every action must have a reverse action, i.e. the action that
undoes (reverses) it.

States are also discrete but with metrics origd and destd

defined on the set of the states. These metrics are used to
search for the reversibilities to ground the predictions.

Metric origd together with its threshold value origε are used

to filter reversibilities by calculating the distance between its
initial state and the current state. The smaller the distance,
the higher is the probability that the actual outcome of
making the same action from the current state will generate a
similar reversibility.

A prametric revd is used to calculate how strongly the

reversibility holds. A prametric is used instead of a metric to
reward transitions from “worse” states to “better” ones (in

case of goal-oriented learning); if revd is a metric, then the

calculated number measures stability.

C.Emergence of obstacle avoidance behaviour

Let us explain how and why the obstacle avoidance
behaviour emerges as a result of avoiding irreversible
actions. To simplify the example we will use a robot with a
proximity sensor and two actions - “move 10 steps forward”
and “move 10 steps backward”. Without loss of generality
we can assume that “steps” and values of proximity sensors
are given in comparable units.

The robot tests these actions in different situations and
checks whether the obtained reversibilities hold. The ones
that fail usually correspond to collisions of some sort or
other negative outcomes. Consider the following 4 cases,
where the robot makes 10 steps forward and then 10 steps
back:

1)If the robot is at least 10 units away from the obstacle,
say, 12 then it doesn’t touch the obstacle and we obtain the
reversibility which holds:

())12(),10(),2(),10(),12(−+

2)If the robot is less than 10 units away from the wall, say,
8 then it touches the wall and its motor stall, we obtain the
reversibility which doesn’t hold:

 ())10(),10(),0(),10(),8(−+

3)If the robot touches the wall and its wheels slide on the
surface then we obtain the same reversibility as in case 2.

4)If the robot touches the obstacle, but the obstacle is light
enough to be moved, then the obtained reversibility will also
be identical to case 2 from the robot’s point of view.

This way the robot discovers that running into or pushing
an obstacle is “bad” without even knowing what the
“obstacle” or “pushing” is. A reversibility model with such
reversibilities will allow a robot to distinguish those state-
action pairs in which “bad things happen” from those in
which they do not.

III.EXPERIMENTAL SETUP

The purpose of the experiments is to verify how abstract
the implementation of the principle is. For this purpose we
compare the performance of the reversibility based algorithm
on two different robots and compare these results to another
well-known algorithm for obstacle avoidance (Q-Learning).

A.Comparative experiments

The experiments consist of two test runs (5200 steps each)
on two different robots. Each test run is divided into two
phases – Phase 1 (data collection phase) and Phase 2
(simulation phase).

During Phase 1 the robot makes pseudo-random moves
and the input data (sensors data, actions made and outcomes
of the actions) is collected and saved into log files. The
predictions are made on-line during Phase 2 using data
collected in the test runs. The performance is measured by
sampling algorithms’ predictions of whether the next action
will succeed and calculating the success rate of those
predictions.

B.The robots

Comparative experiments are conducted on two common
research robot platforms, Khepera II by K-Team and Scitos
G5 by MetraLabs. The experiments on Khepera II are
reported in our previous work [1]. In this paper these
experiments are repeated on Scitos G5 robot in comparable
environmental conditions. The size of the environment was
increased proportionally to the size of the robot.

The relevant technical aspects of these robots are
presented in table I for comparison. The most important
differences between these robots are their shape and polarity
of their sensors.

Both Khepera II and Scitos G5 are differential drive

robots but with different size and slightly different geometry.
Khepera II has the circular shape and the rotation axis is
exactly at the centre of the circle. Therefore it can rotate
freely in very close proximity (1-2 mm) to the obstacle
without touching it.

Scitos G5 also has a circular shape but with an additional
compartment at the back side for the passive third wheel,
which considerably changes the way it can rotate its own
body: a 360° turn can be completed without touching the
obstacle only if the distance to the obstacle is larger than
approximately 200 mm (the size of the passive wheel
compartment).

The sensors of Khepera II and Scitos G5 differ
considerably. Khepera’s sensors are counter proportional to
the measured distance with non-linear characteristics, while
Scitos’ sensors have linear characteristics and are
proportional to the distance measured.

C.Environments

The environment for Khepera II is a right-angled triangle
with side lengths 196mm, 125mm and 233mm. It was set up
by using an additional wall in a smaller rectangular box. The
material for the smaller box, as well as the additional wall, is
a package box for electronic devices, its surface is flat and
robot’s wheels do not slip on it. We set up a very small test
environment to make negative outcomes (collisions) appear
more frequently. The program was run on a PC, it
communicated with the robot through a serial interface to

read sensors’ data and give commands to the motors. The
cable provided both serial link to computer and power for
Khepera II.

The environment for Scitos G5 is a rectangular box of size
970mm x 1500mm. Floor is linoleum and walls are made
from corrugated cardboard.

Fig. 1. Khepera II physical setup: the experiment was conducted using the
setup with the wall as shown in the bottom picture. Upper pictures show
how the whole setup looked like.

Fig. 2. Scitos G5 physical setup: the robot inside the box, walls are covered
with corrugated cardboard for better sensor readings.

D.Robot Movements

The robot is given a set of actions with corresponding
reverse actions: movements forward-backward and turning
left-right are pair wise reverse-actions to each other.

Actions are defined in terms of wheel commands. An

action),(21 mma = consists of a pair of motor

TABLE I
COMPARISON OF KHEPERA II AND SCITOS G5 ROBOTS

Property Khepera II Scitos G5

Width 70 mm 617 mm
Length 70 mm 737 mm
Height 30 mm 582 mm
Weight 0.080 kg 60 kg
Payload 0.250 kg 50 kg
Number and
type of sensors

8 Infra-red proximity
and ambient light
sensors with up to
100mm range

24 ultrasonic range
finders
with up to 3000 mm
range

Sensors
polarity

Counter-proportional to
distance

Proportional to distance

displacement commands, for left and right wheels, expressed
in native wheel encoder units for Khepera II. A discrete set
of actions is used in the experiments:

)200,200(0 −=a rotate counter-clockwise,

)200,200(1 =a make a step forward,

)200,200(2 −−=a make a step backward,

)200,200(3 −=a rotate clockwise.

, where

21120330 ,,, aaaaaaaa −=−=−=−=

In other words, going forward undoes going backward and
turning right undoes turning left, and vice-versa.

The wheel commands in Khepera II internal units were
translated to the speed commands of Scitos G5 as following:
200 units correspond to approximately 150 mm
forward/backward movements and approximately 42 degrees
rotation angles. For Khepera II these values are
approximately 16mm and 30 degrees.

In the world W the state vector is

),,,(3210 dddds = where id are sensor values for front,

back, left and right sensors, accordingly. The robot moves
using the algorithm described in Fig. 3.

1. Record current state 1. Record current state 1. Record current state 1. Record current state),...,(30 ddsi =

2. 2. 2. 2. Execute a random action as Execute a random action as Execute a random action as Execute a random action as ia

3. Record the state 3. Record the state 3. Record the state 3. Record the state),...,(301 ddsi =+

4. Execute the reverse action4. Execute the reverse action4. Execute the reverse action4. Execute the reverse action for for for for ia as as as as 1+ia

5. Record the resulting state as 5. Record the resulting state as 5. Record the resulting state as 5. Record the resulting state as 2+is

6. E6. E6. E6. Execute a random action as xecute a random action as xecute a random action as xecute a random action as 2+ia

7. Add 3 to 7. Add 3 to 7. Add 3 to 7. Add 3 to i and repeat. and repeat. and repeat. and repeat.

Fig. 3. Movement algorithm (Phase 1)

In other words, the robot makes a random move followed
by its reverse action, then makes another random action, but
without a reverse action, and then repeats the pattern. The
purpose of the first two actions is to generate at least one
pair of actions to test if the reversibility holds. The purpose
of the next (random) action without a matching reverse
action is to make the robot to explore the environment.

E.Software design

The code consists of the following units (see Fig. 4):
� an independent agent that generates the sequence of

actions to move the robot during the first phase
� Q-Learning and reversibility based algorithms

running in parallel.
� a “switch” to route data between the agent and the

algorithms, or to simulate the test run in the second
phase

In Phase 1 real-world data is gathered from the test run
and saved into a log file. The file contains sensor readings

data, actions made and the outcomes of the actions.
Phase 2 is a simulation and can be executed without a

robot. In the beginning the log file from Phase 1 is loaded
into memory, parsed as sensor readings and actions and then
this history is fed to the algorithms, getting predictions of
actions’ successfulness simultaneously (see Fig. 5).

Fig. 4. Software design diagram

1. Read current state as 1. Read current state as 1. Read current state as 1. Read current state as),...,(30 ddsi = from log. from log. from log. from log.

2. Register action 2. Register action 2. Register action 2. Register action is at each algorithm. at each algorithm. at each algorithm. at each algorithm.

2. Read the next action as 2. Read the next action as 2. Read the next action as 2. Read the next action as ia from log. from log. from log. from log.

3. Get predictions from the algorithms and 3. Get predictions from the algorithms and 3. Get predictions from the algorithms and 3. Get predictions from the algorithms and comparecomparecomparecompare

themthemthemthem to the real outcome to the real outcome to the real outcome to the real outcome....

4. Register action 4. Register action 4. Register action 4. Register action ia a a a at each algorithm.t each algorithm.t each algorithm.t each algorithm.

5. Calculate reward signal for the last action based on 5. Calculate reward signal for the last action based on 5. Calculate reward signal for the last action based on 5. Calculate reward signal for the last action based on

the info from logthe info from logthe info from logthe info from log, register it at Q, register it at Q, register it at Q, register it at Q----Learning algorithm.Learning algorithm.Learning algorithm.Learning algorithm.

6. Add 1 to 6. Add 1 to 6. Add 1 to 6. Add 1 to i and repeat. and repeat. and repeat. and repeat.

Fig. 5. Prediction data collection algorithm (Phase 2)

F.Reversibility based algorithm

The aim of the reversibility based algorithm is to predict if
a certain action from a certain state is reversible or not.

The algorithm is described in Fig. 6. It takes a sequence of

states and actions as an input: ,...,,,,,, 3221100 sasasas

At every 1>i , if 21 −− −= ii aa then the reversibility

()iiiii sasas ,,,, 1122 −−−− is added to robot’s experience,

which is a vector of reversibilities.

To predict the outcome of making action ta from state

ts , an expected irreversibility value revv is calculated using

a set of reversibilities selected from the experience vector (in
the experiments we select reversibilities with the same

forward action and () origtorig ssd ε<,0 , where 0s is the

initial state of the reversibility under consideration).

The value of revv is a weighted average of ()iirev ssd ,2−

values of selected reversibilities. Reversibilities are sorted by

()torig ssd ,0 in an ascending order and their weights are

1/i2 (1, 1/4, 1/9, 1/16, etc), i.e. reversibilities with a “closer”

Robot

Switch

Action generator

Predictors

Q-Learning

Reversibility
based learning

initial state have a stronger influence.
In the experiments we use the Euclidean metric to

calculate origd and revd ; the values origε and revε are

finite and selected manually. The metric destd was not used

in the experiments, i.e. ∞=destε .

1111. Read current state . Read current state . Read current state . Read current state),...,(30 ddsi = and the next and the next and the next and the next

actionactionactionaction ia from log. from log. from log. from log.

2. Choose a number of reversibilities from the set of 2. Choose a number of reversibilities from the set of 2. Choose a number of reversibilities from the set of 2. Choose a number of reversibilities from the set of

experienced ones with experienced ones with experienced ones with experienced ones with ia forward action, based on forward action, based on forward action, based on forward action, based on

origd between between between between is a a a and experienced reversibility’nd experienced reversibility’nd experienced reversibility’nd experienced reversibility’s initial s initial s initial s initial

state.state.state.state.

3. Calculate the 3. Calculate the 3. Calculate the 3. Calculate the expectedexpectedexpectedexpected irreversibility value irreversibility value irreversibility value irreversibility value revv

using using using using revd of experienced reversibilities’ of experienced reversibilities’ of experienced reversibilities’ of experienced reversibilities’ initial and initial and initial and initial and

final states.final states.final states.final states.

5. If no reversibilities are5. If no reversibilities are5. If no reversibilities are5. If no reversibilities are selected, make no prediction. selected, make no prediction. selected, make no prediction. selected, make no prediction.

6. If 6. If 6. If 6. If revv is greater than is greater than is greater than is greater than revε , then predict negative , then predict negative , then predict negative , then predict negative

outcome, predict positive outcome otherwise.outcome, predict positive outcome otherwise.outcome, predict positive outcome otherwise.outcome, predict positive outcome otherwise.

7777. . . . If If If If 2<i , add 1 to , add 1 to , add 1 to , add 1 to i and repeat and repeat and repeat and repeat....

8888. Read the . Read the . Read the . Read the lastlastlastlast action as action as action as action as 1−ia and the and the and the and the previous previous previous previous action action action action

2−ia from log. from log. from log. from log.

9. If 9. If 9. If 9. If 1−ia is not a reverse is not a reverse is not a reverse is not a reverse----action of action of action of action of 2−ia , add 1 to , add 1 to , add 1 to , add 1 to i
and repeatand repeatand repeatand repeat....

10. Add the new obtained reversibility as 10. Add the new obtained reversibility as 10. Add the new obtained reversibility as 10. Add the new obtained reversibility as

),,,,(1122 iiiii sasas −−−− to the set of experienced to the set of experienced to the set of experienced to the set of experienced

reversibilitiesreversibilitiesreversibilitiesreversibilities....

11111111. Add 1 to . Add 1 to . Add 1 to . Add 1 to i and repeat. and repeat. and repeat. and repeat.

Fig. 6. Reversibility based algorithm

G.Reinforcement learning algorithm

Reinforcement learning is a commonly used learning
method to learn obstacle avoidance by trial and error ([5],
[6], [7]). Therefore we have chosen a Q-Learning algorithm
to compare the performance of the reversibility based
learning to a standard method.

The main difference between reinforcement learning
algorithms and the reversibility based algorithm is that a
reinforcement learning algorithm receives an external reward
signal indicating the success of an action. Reversibility based
algorithm, on the other hand, uses only sensor data to
determine the success of an action.

In the Q-Learning algorithm the expected reward of a
state-action pair is updated using the following expression:

)],(),()[,(

),(),(

1 tttttttt

tttt

asQasQras

asQasQ

−++

+←

+γα
 (1)

Our experiment consists of random movements. Therefore
the long-term reward is irrelevant and only short-term reward

should be used, for this reason we take 0=γ .

The prediction value is calculated as)),((tt asQsign ,

i.e. negative Q means a negative prediction, positive Q

means a positive prediction. Initially, Q values are set to 0

and if Q still has the initial value, no grounded prediction

can be made.

H.Other implementation details

Khepera’s infra-red sensors are very sensitive to indoor
ambient light, therefore its test environment was placed into
a box to reduce sensor noise. The corrugated cardboard for
Scitos G5 environment was chosen because it reflects
ultrasound much more uniformly than other non-corrugated
materials.

Scitos G5 default configuration file was altered to change
the way sensor readings were made (low noise mode is on,
reading interval is 50ms, 4 sensors per measurement) and

rotational PID controller’s Kp was set to 2.0 . Sensor values
for Scitos are in metres, therefore they are multiplied by
1000 to be of equal scale to the ones of Khepera. This
doesn’t affect the reversibility based algorithm, but makes
saving and loading the log file simpler.

During the experiments),(ttt asα for Q-Learning update

expression was set to 01.0 . Threshold values origε and

revε were constant throughout the experiments, but the

experiments for different robots used different values. In
experiments with Khepera II the settings were:

6300=origε and 5000=revε . In experiments with

Scitos G5 the settings were: 35000=origε and

48000=revε .

IV.RESULTS

0

10

20

30

40

50

60

70

80

90

100

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

Number of actions (x100)

C
o

rr
ec

t
p

re
d

ic
ti

o
n

s
(%

)

Reversibility based algorithm Q-Learning

Fig. 7. Test run results for Khepera II

We run two algorithms on both robots and both learning
methods are predicting the possibility of collisions with

obstacles. Fig. 7 represents the test results for Khepera II, it
compares prediction success rate for the Q-Learning and
reversibility based algorithms. These results are also
reported in [1]. Fig. 8 represents the comparative
experimental results for Scitos G5.

0

10

20

30

40

50

60

70

80

90

100

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

Number of actions (x100)

C
o

rr
ec

t
p

re
d

ic
ti

o
n

s
(%

)

Reversibility based algorithm Q-Learning

Fig. 8. Test run results for Scitos G5

A.Q-Learning vs. Reversibility based learning

It appears that on both robots Q-Learning converges to a
10% higher prediction success rate than the reversibility
based learning.

Let us remind the reader that while the Q-Learning
algorithm is explicitly designed to avoid obstacles (at every
collision the robot gets a negative reward signal proportional
to the size of unfinished movement), the robot learning a
reversibility model has no concept of an obstacle or
collision.

The reversibility based algorithm, at the same time, does
not use the reward signal and only tries to predict whether
the action will be reversible or not. If the robot suppressed
the irreversible actions it would emerge to obstacle
avoidance behaviour very similar to the one achieved by a
dedicated obstacle avoidance Q-Learning algorithm.

The 10% higher performance of the Q-Learning algorithm
can be easily explained. The method of measuring the
success of predictions always works in advantage of the Q-
Learning algorithm. The Q-Learning algorithm predicts
future rewards based on the experienced rewards, while the
reversibility based algorithm predicts future rewards based
on sensor data alone.

B.Khepera II vs. Scitos G5

It appears also that reversibility based algorithm performs
equally well on both robots: it converges to about 70%
success rate in predicting collisions after about 3000 steps.

The Khepera’s graph has several drops in prediction
success rate around regions of 800, 1700, 3100 and 3900
steps. The Khepera II robot was stuck occasionally during
those periods of time, which decreased the learning and
prediction success rates.

The aim of these experiments was to confirm/reject the
hypothesis that the code based on an abstract principle of
avoiding irreversible actions can be run without major
changes on different hardware in different environments.

We interpret the results as positive, since, indeed, a
concrete robot behaviour of obstacle avoidance is observed
on two different robots to emerge from the abstract principle
“Don’t do things you can’t undo”. However, there are
problems with this straightforward plain-sensor approach: it
is influenced by many factors like sensor precision, sensor
noise, actions’ precision, etc. However, this problem belongs
more to the realm of the state identification: Q-Learning
algorithm severely suffers from the same problems.

It is difficult to distinguish sensors by their importance for
the particular action. For example, sensors on the back side
of the robot are useless when predicting whether moving
forward will succeed or not. Different kind of sensors can
also be a problem, since Euclidean distance takes all
numbers equally into account. Thus, a sensor returning
current time stamp or a sensor returning distance in
millimetres and others in metres will be a huge problem in
this case and will render both algorithms almost useless
without additional tuning.

Q-Learning uses discrete states, thus, space state tiling is a
problem, also the source of the reward signal must be chosen
carefully to reward only collision-free movements and to
penalize only collisions.

The reversibility principle based algorithm has a similar
problem of state identification, sensors’ linearity must be as
strong as possible, and the scale of sensor values must be the
same or proportional to the importance of the sensor for state
identification. Another problem is to choose threshold values

origε , destε and revε . We chose those values manually

using statistical information of the particular test run data.

V.CONCLUSIONS AND FUTURE WORK

The goal of this paper was to verify whether a concrete
behaviour of obstacle avoidance can emerge from an abstract
principle of avoiding irreversible actions. Also we wanted to
compare the performance of the strategy on different robotic
platforms.

We conclude that both robots involved in the experiments
demonstrated similar performance compared to each other
and to Q-Learning algorithm.

We see the future of this research as a cooperative work of
environment-model-aware algorithms in conjunction with
abstract principles to guide them on a higher level of control
with the higher level of abstraction. Another direction is to
use the principle of reversibility to make other learning
algorithms learn faster or safer, or both.

REFERENCES

[1] M. Kruusmaa, Y. Gavshin and A. Eppendahl, “Don’t Do Things You
Can’t Undo: Reversibility Models for Generating Safe Behaviours,”
in Proc, of the IEEE Conference on Robotics and Automation,
Rome, 2007, pp. 1134–1139.

[2] J. Gavšin, “Using The Concept of Reversibility To Develop Safe
Behaviours in Robotics”, MSc thesis, University of Tartu, Tartu,
2007, http://hdl.handle.net/10062/1990 .

[3] F. Kaplan And P.Y. Oudeyer, “Motivational principles for visual
know-how development,” in Proc. Of the Third International
Workshop on Epigenetic Robotics, Lund University Cognitive
Studies ,2003.

[4] A. Eppendahl and M. Kruusmaa, “Obstacle Avoidance as a
Consequence of Suppressing Irreversible Actions,” in Proc, of the
Sixth International Workshop on Epigenetic Robotics, Lund
University Cognitive Studies, 2006, vol. 128.

[5] M. Lin, J. Zhu and Z. Sun, "Learning Obstacle Avoidance Behavior
Using Multi-agent Learning with Fuzzy States", Lecture Notes in
Computer Science, Springer Berlin/Heidelberg, pp 389-398, 2004.

[6] D. A. Gutnisky and B. S. Zanutto, "Learning Obstacle Avoidance
with an Operant Behavior Model", Arteficial Life, Winter 2004,
Vol.10, No.1, pp 65-81, 2004.

[7] K. Maček, I. Petrović, N. Perić, "A Reinforcement Learning
Approach to Obstacle Avoidance of Mobile Robots," in Proc. of the
7th IEEE International Workshop on Advanced Motion Control -
ACM 2002, Maribor, Slovenia, pp.462-466, 2002.

