
 
 

 

 
Abstract—This paper explores the idea that robots can learn 

safe behaviours by learning to reverse actions. Previously we 
have demonstrated that obstacle avoidance behaviour emerges 
when a robot learns to suppress irreversible actions and we 
have also demonstrated emergence of territorial behaviour in 
case of more complicated scenarios. 

In this paper we represent comparative experiments with 
two different robots to investigate if a code based on this 
abstract principle is applicable on different robots with 
different shape, size and polarity of proximity sensors in 
different environments. Furthermore, we compare the 
performance of the algorithm based on the reversibly of actions 
to a dedicated Q-learning obstacle avoidance algorithm. The 
experimental results show that the performance of the 
algorithm is the same on both platforms and is 10% lower than 
of Q-Learning algorithm. We interpret this as the evidence 
confirming the hypothesis. We conclude that the reversibility 
based algorithm can be used on different robotic platforms with 
minor modifications to sensory-motor interface. 

I.INTRODUCTION 

This paper is concerned with safety of robot behaviour by 
applying an abstract principle of reversibility on real robots. 
In [1] we demonstrated that the principle “Don’t do things 
you can’t undo” generates a concrete safe behaviour of 
obstacle avoidance. We speculated further that this abstract 
principle can be applied to different robots in different 
environments. Furthermore we speculated that this principle 
could generate variety of safe behaviours. In [2] we 
demonstrated that a more complex territorial behaviour can 
emerge as a result of avoiding irreversible sequences of 
actions. 

We speculate that a robot governed by such an abstract 
principle will behave safely in a wide variety of 
environments, since many undesirable actions such as 
damage of the robot/environment or getting stuck is 
characterized by irreversibility. Although not all irreversible 
actions are undesirable, it is safe to say that all reversible 
actions are safe.  

Reversibility, or absence of irreversibility, is an extension 
of stability in the way that reversibility can be task-specific: 
positive changes after “good” actions will be identified as 
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non-stable, but reversible. 
The idea of using abstract principles to govern robot 

behaviour has already been studied before. Kaplan and 
Oudeyer in [3] showed that a robot can develop visual 
competences from scratch driven only by internal 
motivations independent of any particular task: 
predictability, familiarity and stability.  

The main benefit of using the abstract principle, instead of 
specific routines such as avoiding obstacles, falls, traps, risky 
regions or routes or staying near some known landmark, is 
its generality. It explains “why” a robot should behave that 
way and if a new problematic action/situation occurs, a robot 
avoiding irreversible actions will avoid these new dangers 
after some learning period. 

The main contribution of this article is a comparative test 
to confirm/reject the hypothesis that the code based on this 
abstract principle can be run without major changes on 
different robots with different shape, size and polarity of 
proximity sensors in different environments. 

In the following section we present our ideas in a more 
formal way. In section 3 we describe the experimental setup, 
the algorithms used, explain the differences between the two 
robots used in experiments, their test environments and 
specific implementation details. In section 4 we present the 
experimental results and discuss them together with 
applicability of the concept of reversibility. In the last 
section we make conclusions and speculate about some 
possible directions of future work. 

II.THEORETICAL FRAMEWORK 

This section briefly describes the general theoretical 
framework used to ground the reversibility based algorithm 
and to test the robots. Emergence of obstacle avoidance 
behaviour is also explained in the end of this section. The 
reader is referred to [2] for more details. 

A.Definitions 

A robot’s world  is a labelled transition system 

( )→Λ,,S , where S  is a set of experienced states, Λ  is a 

set of labels (a label contains an action or a sequence of 
actions), and →  is a set of labelled transitions between the 
states. When the result of an action a  in state s  is not 
wholly determined by the robot, multiple transitions from s  
are labelled with the same action a  and it is the world that 
determines which transition actually happens. 

A reversibility for world W  is a quintuple of three states 

and two actions:  ( )21100 ,,,, sasas . Generally speaking, a 
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composite action 10aa  produces a transition from 0s  to 2s  

through 1s  in W . Also, the action sequence 10aa  is 

expected to work for any states x  and y  with 

( ) origorig sxd ε≤0,  and ( ) destdest syd ε≤1, , where origd , 

destd  are metrics on states and origε , destε  are their 

thresholds. 

The reversibility ( )21100 ,,,, sasas  holds in W  if there 

exists a transition path from 0s  to 2s  through 1s  consisting 

of two transitions labelled accordingly 0a  and 1a , and 

( ) revrev ssd ε≤20, , where revd  is a prametric 

( ( ) 0, ≥yxd rev  and ( ) 0, =xxd rev ) on states and revε  is 

a threshold; fails otherwise.  

An action 0a  in an arbitrary state s  is expected to be 

reversible (by action 1a ), if the reversibility 

( )21100 ,,,, sasas  holds and ( ) origorig ssd ε≤0, .  

A reversibility model of the robot is a set of 
reversibilities that are expected to hold.  

B.Explanations 

A reversibility model can be given to the robot in advance, 
transferred from another robot, extracted by a human from 
the knowledge about the world or learned by the robot. 
Using this model a robot can predict whether the action from 
the state is reversible by iterating through its experience and 
using obtained reversibilities to ground the predictions.  

The actions used are symbolic actions and it is irrelevant 
whether they are atomic or complex actions. These actions 
can also be interpreted as discrete choices if used by a high 
level symbolic decision maker. The only requirement is that 
every action must have a reverse action, i.e. the action that 
undoes (reverses) it. 

States are also discrete but with metrics  origd  and destd  

defined on the set of the states. These metrics are used to 
search for the reversibilities to ground the predictions. 

Metric origd  together with its threshold value origε  are used 

to filter reversibilities by calculating the distance between its 
initial state and the current state. The smaller the distance, 
the higher is the probability that the actual outcome of 
making the same action from the current state will generate a 
similar reversibility.  

A prametric revd  is used to calculate how strongly the 

reversibility holds. A prametric is used instead of a metric to 
reward transitions from “worse” states to “better” ones (in 

case of goal-oriented learning); if revd  is a metric, then the 

calculated number measures stability. 

C.Emergence of obstacle avoidance behaviour 

Let us explain how and why the obstacle avoidance 
behaviour emerges as a result of avoiding irreversible 
actions. To simplify the example we will use a robot with a 
proximity sensor and two actions - “move 10 steps forward” 
and “move 10 steps backward”. Without loss of generality 
we can assume that “steps” and values of proximity sensors 
are given in comparable units. 

The robot tests these actions in different situations and 
checks whether the obtained reversibilities hold. The ones 
that fail usually correspond to collisions of some sort or 
other negative outcomes. Consider the following 4 cases, 
where the robot makes 10 steps forward and then 10 steps 
back: 

1)If the robot is at least 10 units away from the obstacle, 
say, 12 then it doesn’t touch the obstacle and we obtain the 
reversibility which holds:  

( ))12(),10(),2(),10(),12( −+  

2)If the robot is less than 10 units away from the wall, say, 
8 then it touches the wall and its motor stall, we obtain the 
reversibility which doesn’t hold: 

    ( ))10(),10(),0(),10(),8( −+  

3)If the robot touches the wall and its wheels slide on the 
surface then we obtain the same reversibility as in case 2. 

4)If the robot touches the obstacle, but the obstacle is light 
enough to be moved, then the obtained reversibility will also 
be identical to case 2 from the robot’s point of view. 

This way the robot discovers that running into or pushing 
an obstacle is “bad” without even knowing what the 
“obstacle” or “pushing” is. A reversibility model with such 
reversibilities will allow a robot to distinguish those state-
action pairs in which “bad things happen” from those in 
which they do not. 

III.EXPERIMENTAL SETUP 

The purpose of the experiments is to verify how abstract 
the implementation of the principle is. For this purpose we 
compare the performance of the reversibility based algorithm 
on two different robots and compare these results to another 
well-known algorithm for obstacle avoidance (Q-Learning). 

A.Comparative experiments 

The experiments consist of two test runs (5200 steps each) 
on two different robots. Each test run is divided into two 
phases – Phase 1 (data collection phase) and Phase 2 
(simulation phase).  

During Phase 1 the robot makes pseudo-random moves 
and the input data (sensors data, actions made and outcomes 
of the actions) is collected and saved into log files. The 
predictions are made on-line during Phase 2 using data 
collected in the test runs. The performance is measured by 
sampling algorithms’ predictions of whether the next action 
will succeed and calculating the success rate of those 
predictions. 



 
 

 

B.The robots 

Comparative experiments are conducted on two common 
research robot platforms, Khepera II by K-Team and Scitos 
G5 by MetraLabs. The experiments on Khepera II are 
reported in our previous work [1]. In this paper these 
experiments are repeated on Scitos G5 robot in comparable 
environmental conditions. The size of the environment was 
increased proportionally to the size of the robot. 

The relevant technical aspects of these robots are 
presented in table I for comparison. The most important 
differences between these robots are their shape and polarity 
of their sensors.  

 

 
Both Khepera II and Scitos G5 are differential drive 

robots but with different size and slightly different geometry. 
Khepera II has the circular shape and the rotation axis is 
exactly at the centre of the circle. Therefore it can rotate 
freely in very close proximity (1-2 mm) to the obstacle 
without touching it. 

Scitos G5 also has a circular shape but with an additional 
compartment at the back side for the passive third wheel, 
which considerably changes the way it can rotate its own 
body: a 360° turn can be completed without touching the 
obstacle only if the distance to the obstacle is larger than 
approximately 200 mm (the size of the passive wheel 
compartment). 

The sensors of Khepera II and Scitos G5 differ 
considerably. Khepera’s sensors are counter proportional to 
the measured distance with non-linear characteristics, while 
Scitos’ sensors have linear characteristics and are 
proportional to the distance measured. 

C.Environments 

The environment for Khepera II is a right-angled triangle 
with side lengths 196mm, 125mm and 233mm. It was set up 
by using an additional wall in a smaller rectangular box. The 
material for the smaller box, as well as the additional wall, is 
a package box for electronic devices, its surface is flat and 
robot’s wheels do not slip on it. We set up a very small test 
environment to make negative outcomes (collisions) appear 
more frequently. The program was run on a PC, it 
communicated with the robot through a serial interface to 

read sensors’ data and give commands to the motors. The 
cable provided both serial link to computer and power for 
Khepera II. 

The environment for Scitos G5 is a rectangular box of size 
970mm x 1500mm. Floor is linoleum and walls are made 
from corrugated cardboard. 

 

  
Fig. 1. Khepera II physical setup: the experiment was conducted using the 
setup with the wall as shown in the bottom picture. Upper pictures show 
how the whole setup looked like. 
 

  
Fig. 2. Scitos G5 physical setup: the robot inside the box, walls are covered 
with corrugated cardboard for better sensor readings. 
 

D.Robot Movements 

The robot is given a set of actions with corresponding 
reverse actions: movements forward-backward and turning 
left-right are pair wise reverse-actions to each other. 

Actions are defined in terms of wheel commands. An 

action ),( 21 mma =  consists of a pair of motor 

TABLE I 
COMPARISON OF KHEPERA II  AND SCITOS G5 ROBOTS 

Property Khepera II Scitos G5 

Width 70 mm 617 mm 
Length 70 mm 737 mm 
Height 30 mm 582 mm 
Weight 0.080 kg 60 kg 
Payload 0.250 kg 50 kg 
Number and 
type of sensors 

8 Infra-red proximity 
and ambient light 
sensors with up to 
100mm range 

24 ultrasonic range 
finders 
with up to 3000 mm 
range 

Sensors 
polarity 

Counter-proportional to 
distance 

Proportional to distance 

 



 
 

 

displacement commands, for left and right wheels, expressed 
in native wheel encoder units for Khepera II. A discrete set 
of actions is used in the experiments: 

)200,200(0 −=a  rotate counter-clockwise, 

)200,200(1 =a  make a step forward, 

)200,200(2 −−=a  make a step backward, 

)200,200(3 −=a rotate clockwise. 

, where  

21120330 ,,, aaaaaaaa −=−=−=−=  

In other words, going forward undoes going backward and 
turning right undoes turning left, and vice-versa. 

The wheel commands in Khepera II internal units were 
translated to the speed commands of Scitos G5 as following: 
200 units correspond to approximately 150 mm 
forward/backward movements and approximately 42 degrees 
rotation angles. For Khepera II these values are 
approximately 16mm and 30 degrees. 

In the world W  the state vector is 

),,,( 3210 dddds = where id  are sensor values for front, 

back, left and right sensors, accordingly. The robot moves 
using the algorithm described in Fig. 3. 

 

1. Record current state 1. Record current state 1. Record current state 1. Record current state ),...,( 30 ddsi =     

2. 2. 2. 2. Execute a random action as Execute a random action as Execute a random action as Execute a random action as ia ....    

3. Record the state 3. Record the state 3. Record the state 3. Record the state ),...,( 301 ddsi =+ ....    

4. Execute the reverse action4. Execute the reverse action4. Execute the reverse action4. Execute the reverse action for  for  for  for ia  as  as  as  as 1+ia ....    

5. Record the resulting state as 5. Record the resulting state as 5. Record the resulting state as 5. Record the resulting state as 2+is ....    

6. E6. E6. E6. Execute a random action as xecute a random action as xecute a random action as xecute a random action as 2+ia ....    

7. Add 3 to 7. Add 3 to 7. Add 3 to 7. Add 3 to i  and repeat. and repeat. and repeat. and repeat.    

Fig. 3. Movement algorithm (Phase 1) 
 

In other words, the robot makes a random move followed 
by its reverse action, then makes another random action, but 
without a reverse action, and then repeats the pattern. The 
purpose of the first two actions is to generate at least one 
pair of actions to test if the reversibility holds. The purpose 
of the next (random) action without a matching reverse 
action is to make the robot to explore the environment. 

E.Software design 

The code consists of the following units (see Fig. 4):  
� an independent agent that generates the sequence of 

actions to move the robot during the first phase 
� Q-Learning and reversibility based algorithms 

running in parallel. 
� a “switch” to route data between the agent and the 

algorithms, or to simulate the test run in the second 
phase 

In Phase 1 real-world data is gathered from the test run 
and saved into a log file. The file contains sensor readings 

data, actions made and the outcomes of the actions. 
Phase 2 is a simulation and can be executed without a 

robot. In the beginning the log file from Phase 1 is loaded 
into memory, parsed as sensor readings and actions and then 
this history is fed to the algorithms, getting predictions of 
actions’ successfulness simultaneously (see Fig. 5). 

 

 
Fig. 4. Software design diagram 
 

1. Read current state as 1. Read current state as 1. Read current state as 1. Read current state as ),...,( 30 ddsi =  from log. from log. from log. from log.    

2. Register action 2. Register action 2. Register action 2. Register action is  at each algorithm. at each algorithm. at each algorithm. at each algorithm.    

2. Read the next action as 2. Read the next action as 2. Read the next action as 2. Read the next action as ia  from log. from log. from log. from log.    

3. Get predictions from the algorithms and 3. Get predictions from the algorithms and 3. Get predictions from the algorithms and 3. Get predictions from the algorithms and comparecomparecomparecompare    

themthemthemthem to the real outcome to the real outcome to the real outcome to the real outcome....    

4. Register action 4. Register action 4. Register action 4. Register action ia  a a a at each algorithm.t each algorithm.t each algorithm.t each algorithm.    

5. Calculate reward signal for the last action based on 5. Calculate reward signal for the last action based on 5. Calculate reward signal for the last action based on 5. Calculate reward signal for the last action based on 

the info from logthe info from logthe info from logthe info from log, register it at Q, register it at Q, register it at Q, register it at Q----Learning algorithm.Learning algorithm.Learning algorithm.Learning algorithm.    

6. Add 1 to 6. Add 1 to 6. Add 1 to 6. Add 1 to i  and repeat. and repeat. and repeat. and repeat.    

Fig. 5. Prediction data collection algorithm (Phase 2) 
 

F.Reversibility based algorithm 

The aim of the reversibility based algorithm is to predict if 
a certain action from a certain state is reversible or not. 

The algorithm is described in Fig. 6. It takes a sequence of 

states and actions as an input: ,...,,,,,, 3221100 sasasas  

At every 1>i , if 21 −− −= ii aa  then the reversibility 

( )iiiii sasas ,,,, 1122 −−−−  is added to robot’s experience, 

which is a vector of reversibilities.  

To predict the outcome of making action ta  from state 

ts , an expected irreversibility value revv  is calculated  using 

a set of reversibilities selected from the experience vector (in 
the experiments we select reversibilities with the same 

forward action and ( ) origtorig ssd ε<,0 , where 0s is the 

initial state of the reversibility under consideration). 

The value of revv  is a weighted average of ( )iirev ssd ,2−  

values of selected reversibilities. Reversibilities are sorted by 

( )torig ssd ,0  in an ascending order and their weights are 

1/i2 (1, 1/4, 1/9, 1/16, etc), i.e. reversibilities with a “closer” 

Robot 
 

Switch 
 

Action generator 

Predictors 

Q-Learning 

Reversibility 
based learning 



 
 

 

initial state have a stronger influence. 
In the experiments we use the Euclidean metric to 

calculate origd  and revd ; the values origε  and revε  are 

finite and selected manually. The metric destd  was not used 

in the experiments, i.e. ∞=destε . 

 

1111. Read current state . Read current state . Read current state . Read current state ),...,( 30 ddsi =  and the next  and the next  and the next  and the next 

actionactionactionaction    ia  from log. from log. from log. from log.    

2. Choose a number of reversibilities from the set of 2. Choose a number of reversibilities from the set of 2. Choose a number of reversibilities from the set of 2. Choose a number of reversibilities from the set of 

experienced ones with experienced ones with experienced ones with experienced ones with ia  forward action, based on  forward action, based on  forward action, based on  forward action, based on 

origd  between  between  between  between is  a a a and experienced reversibility’nd experienced reversibility’nd experienced reversibility’nd experienced reversibility’s initial s initial s initial s initial 

state.state.state.state.    

3. Calculate the 3. Calculate the 3. Calculate the 3. Calculate the expectedexpectedexpectedexpected irreversibility value  irreversibility value  irreversibility value  irreversibility value revv     

using using using using revd  of experienced reversibilities’ of experienced reversibilities’ of experienced reversibilities’ of experienced reversibilities’ initial and  initial and  initial and  initial and 

final states.final states.final states.final states.    

5. If no reversibilities are5. If no reversibilities are5. If no reversibilities are5. If no reversibilities are selected, make no prediction.  selected, make no prediction.  selected, make no prediction.  selected, make no prediction. 

6. If 6. If 6. If 6. If revv  is greater than  is greater than  is greater than  is greater than revε , then predict negative , then predict negative , then predict negative , then predict negative 

outcome, predict positive outcome otherwise.outcome, predict positive outcome otherwise.outcome, predict positive outcome otherwise.outcome, predict positive outcome otherwise.    

7777. . . . If If If If 2<i , add 1 to , add 1 to , add 1 to , add 1 to i  and repeat and repeat and repeat and repeat....    

8888. Read the . Read the . Read the . Read the lastlastlastlast action as  action as  action as  action as 1−ia  and the  and the  and the  and the previous previous previous previous action  action  action  action  

2−ia  from log. from log. from log. from log.    

9. If 9. If 9. If 9. If 1−ia  is not a reverse is not a reverse is not a reverse is not a reverse----action of action of action of action of 2−ia , add 1 to , add 1 to , add 1 to , add 1 to i     
and repeatand repeatand repeatand repeat....    

10. Add the new obtained reversibility as 10. Add the new obtained reversibility as 10. Add the new obtained reversibility as 10. Add the new obtained reversibility as 

),,,,( 1122 iiiii sasas −−−−  to the set of experienced  to the set of experienced  to the set of experienced  to the set of experienced 

reversibilitiesreversibilitiesreversibilitiesreversibilities....    

11111111. Add 1 to . Add 1 to . Add 1 to . Add 1 to i  and repeat. and repeat. and repeat. and repeat.    

Fig. 6. Reversibility based algorithm 
 

G.Reinforcement learning algorithm 

Reinforcement learning is a commonly used learning 
method to learn obstacle avoidance by trial and error ([5], 
[6], [7]). Therefore we have chosen a Q-Learning algorithm 
to compare the performance of the reversibility based 
learning to a standard method.  

The main difference between reinforcement learning 
algorithms and the reversibility based algorithm is that a 
reinforcement learning algorithm receives an external reward 
signal indicating the success of an action. Reversibility based 
algorithm, on the other hand, uses only sensor data to 
determine the success of an action. 

In the Q-Learning algorithm the expected reward of a 
state-action pair is updated using the following expression:  

)],(),()[,(

),(),(

1 tttttttt

tttt

asQasQras

asQasQ

−++

+←

+γα
 (1) 

Our experiment consists of random movements. Therefore 
the long-term reward is irrelevant and only short-term reward 

should be used, for this reason we take 0=γ . 

The prediction value is calculated as )),(( tt asQsign , 

i.e. negative Q  means a negative prediction, positive Q  

means a positive prediction. Initially, Q  values are set to 0 

and if Q  still has the initial value, no grounded prediction 

can be made. 

H.Other implementation details 

Khepera’s infra-red sensors are very sensitive to indoor 
ambient light, therefore its test environment was placed into 
a box to reduce sensor noise. The corrugated cardboard for 
Scitos G5 environment was chosen because it reflects 
ultrasound much more uniformly than other non-corrugated 
materials. 

Scitos G5 default configuration file was altered to change 
the way sensor readings were made (low noise mode is on, 
reading interval is 50ms, 4 sensors per measurement) and 

rotational PID controller’s Kp was set to 2.0 . Sensor values 
for Scitos are in metres, therefore they are multiplied by 
1000 to be of equal scale to the ones of Khepera. This 
doesn’t affect the reversibility based algorithm, but makes 
saving and loading the log file simpler. 

During the experiments ),( ttt asα  for Q-Learning update 

expression was set to 01.0 .  Threshold values origε  and 

revε  were constant throughout the experiments, but the 

experiments for different robots used different values. In 
experiments with Khepera II the settings were: 

6300=origε  and 5000=revε . In experiments with 

Scitos G5 the settings were: 35000=origε  and 

48000=revε . 

IV.RESULTS 
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Fig. 7. Test run results for Khepera II 
 

We run two algorithms on both robots and both learning 
methods are predicting the possibility of collisions with 



 
 

 

obstacles. Fig. 7 represents the test results for Khepera II, it 
compares prediction success rate for the Q-Learning and 
reversibility based algorithms. These results are also 
reported in [1]. Fig. 8 represents the comparative 
experimental results for Scitos G5. 
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Fig. 8. Test run results for Scitos G5  
 

A.Q-Learning vs. Reversibility based learning 

It appears that on both robots Q-Learning converges to a 
10% higher prediction success rate than the reversibility 
based learning. 

Let us remind the reader that while the Q-Learning 
algorithm is explicitly designed to avoid obstacles (at every 
collision the robot gets a negative reward signal proportional 
to the size of unfinished movement), the robot learning a 
reversibility model has no concept of an obstacle or 
collision.  

The reversibility based algorithm, at the same time, does 
not use the reward signal and only tries to predict whether 
the action will be reversible or not. If the robot suppressed 
the irreversible actions it would emerge to obstacle 
avoidance behaviour very similar to the one achieved by a 
dedicated obstacle avoidance Q-Learning algorithm. 

The 10% higher performance of the Q-Learning algorithm 
can be easily explained. The method of measuring the 
success of predictions always works in advantage of the Q-
Learning algorithm. The Q-Learning algorithm predicts 
future rewards based on the experienced rewards, while the 
reversibility based algorithm predicts future rewards based 
on sensor data alone. 

B.Khepera II vs. Scitos G5 

It appears also that reversibility based algorithm performs 
equally well on both robots: it converges to about 70% 
success rate in predicting collisions after about 3000 steps. 

The Khepera’s graph has several drops in prediction 
success rate around regions of 800, 1700, 3100 and 3900 
steps. The Khepera II robot was stuck occasionally during 
those periods of time, which decreased the learning and 
prediction success rates. 

The aim of these experiments was to confirm/reject the 
hypothesis that the code based on an abstract principle of 
avoiding irreversible actions can be run without major 
changes on different hardware in different environments.  

We interpret the results as positive, since, indeed, a 
concrete robot behaviour of obstacle avoidance is observed 
on two different robots to emerge from the abstract principle 
“Don’t do things you can’t undo”. However, there are 
problems with this straightforward plain-sensor approach: it 
is influenced by many factors like sensor precision, sensor 
noise, actions’ precision, etc. However, this problem belongs 
more to the realm of the state identification: Q-Learning 
algorithm severely suffers from the same problems. 

It is difficult to distinguish sensors by their importance for 
the particular action. For example, sensors on the back side 
of the robot are useless when predicting whether moving 
forward will succeed or not. Different kind of sensors can 
also be a problem, since Euclidean distance takes all 
numbers equally into account. Thus, a sensor returning 
current time stamp or a sensor returning distance in 
millimetres and others in metres will be a huge problem in 
this case and will render both algorithms almost useless 
without additional tuning. 

Q-Learning uses discrete states, thus, space state tiling is a 
problem, also the source of the reward signal must be chosen 
carefully to reward only collision-free movements and to 
penalize only collisions.  

The reversibility principle based algorithm has a similar 
problem of state identification, sensors’ linearity must be as 
strong as possible, and the scale of sensor values must be the 
same or proportional to the importance of the sensor for state 
identification. Another problem is to choose threshold values 

origε , destε  and revε . We chose those values manually 

using statistical information of the particular test run data. 

V.CONCLUSIONS AND FUTURE WORK 

The goal of this paper was to verify whether a concrete 
behaviour of obstacle avoidance can emerge from an abstract 
principle of avoiding irreversible actions. Also we wanted to 
compare the performance of the strategy on different robotic 
platforms. 

We conclude that both robots involved in the experiments 
demonstrated similar performance compared to each other 
and to Q-Learning algorithm. 

We see the future of this research as a cooperative work of 
environment-model-aware algorithms in conjunction with 
abstract principles to guide them on a higher level of control 
with the higher level of abstraction. Another direction is to 
use the principle of reversibility to make other learning 
algorithms learn faster or safer, or both. 
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