











## What is canonical correlation analysis

- arg max<sub>a, b</sub> ρ, where ρ = corr(a'X, b'Y)
- X, Y vectors of random variables
  - a, b vectors we are seeking for
- Typical use for canonical correlation in the psychological context is to take a two sets of variables and see what is common amongst the two sets.
- For example you could take two well established multidimensional personality tests such as the MMPI and the NEO. By seeing how the MMPI factors relate to the NEO factors, you could gain insight into what dimensions were common between the tests and how much variance was shared.







The Algorithm – Theory  

$$\max_{f_x, f_y} corr(\langle f_x, \Phi(x) \rangle, \langle f_y, \Phi(y) \rangle)$$

$$B\xi = \rho D\xi$$

$$B = \begin{pmatrix} O & K_x K_y \\ K_x K_y & O \end{pmatrix} D = \begin{pmatrix} K_x^2 & O \\ O & K_y^2 \end{pmatrix} \xi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$f_x = \sum_i \alpha_i \Phi(x_i) \qquad f_y = \sum_j \beta_j \Phi(y_j)$$







| Results                                  |                                  |                                      |                                  |                                                    |                                |                                          |                           |                       |                            |                          |                         |
|------------------------------------------|----------------------------------|--------------------------------------|----------------------------------|----------------------------------------------------|--------------------------------|------------------------------------------|---------------------------|-----------------------|----------------------------|--------------------------|-------------------------|
| Pseudo<br>test do<br>in cross<br>K – uns | ) que<br>cume<br>s-ling<br>speci | ry tes<br>ents ti<br>uistic<br>fied. | sts: 5<br>hems<br>tests<br>Proba | quer<br>elves<br>s.<br>ably t                      | ry words<br>s in mor<br>he num | s, relevar<br>nolinguist<br>liber of ter | nt doc<br>ic ret<br>rms / | cume<br>rieva<br>dime | nts w<br>I or th<br>ension | rere ti<br>neir n<br>ns. | he<br>nates             |
| К                                        | 100                              | 200                                  | 300                              | 400                                                | FULL                           | К                                        | 100                       | 200                   | 300                        | 400                      | FULL                    |
| CL-LSI                                   | $17\pm1$<br>$40\pm2$             | $24\pm1 \\ 55\pm2$                   | $28 \pm 1 \\ 61 \pm 1$           | $\begin{array}{c} 31{\pm}1\\ 64{\pm}1 \end{array}$ | $40\pm 3 \\ 60\pm 6$           | CL-LSI<br>CL-KCCA                        | $39\pm1$<br>$83\pm1$      | $47\pm1$<br>$91\pm1$  | $51\pm1$<br>$94\pm1$       | $54\pm1$<br>$94\pm1$     | $63\pm 4$<br>88 $\pm 5$ |
| CL-KCCA                                  |                                  |                                      |                                  |                                                    |                                |                                          |                           |                       |                            |                          |                         |
| cL-KCCA                                  | ish-Frenc                        | ch top-ra<br>200                     | nked ret                         | rieval ac<br>400                                   | curacy, %                      | Table 7. Er                              | nglish-Fr<br>100          | ench top<br>200       | o-ten ret<br>300           | rieval ac<br>400         | curacy,<br>FULL         |





