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Matrix algebra is one of the most useful tools in many disci-
plines, in particularly those related to data analysis (statis-
tics, signal processing, machine learning, etc.). This short
tutorial intends to provide a brief summary of the most im-
portant facts relating to matrix algebra for a person that has
taken a linear algebra course a long time ago and has for-
gotten most of the details. Although I did my best to make
the text readable even by a complete novice, it is clear that
the size of the document does not allow for a comprehensive
explanation, so beginners are advised to consult some good
fat textbook full of pictures, examples and exercises. This
exposition sacrifices a lot of generality for the sake of sim-
plicity, and only covers those topics that were required by a
certain course on machine learning.

1 The Euclidian Space R
n

Vector space R
n In the following we shall denote the set of all real num-

bers by R. The set of all pairs of real numbers will be denoted by R
2, the

set of triples — by R
3, and, in general, the set of n-tuples — by R

n. So,

R
n = R × R × · · · × R

︸ ︷︷ ︸

n

= {(r1, r2, . . . , rn) | ri ∈ R}.

We call elements of R
n vectors and denote them by small boldface letters.

For example:
v := (v1, v2, . . . , vn).

We define addition of vectors in a straighforward manner:

v+w = (v1, v2, . . . , vn)+(w1, w2, . . . , wn) := (v1 +w1, v2 +w2, . . . , vn +wn).

Similarly we define componentwise multiplication of a vector by a scalar (by
scalars we refer to real numbers). That is, for any v ∈ R

n and α ∈ R:

αv := (αv1, αv2, . . . , αvn).
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Exercise 1: Consider vectors in R
2. It is useful to regard each vector (v1, v2) as

an arrow on a plane, pointing from point (0, 0) to point (v1, v2). Let v = (2, 1),

w = (1, 2). Construct the corresponding arrows. Construct arrows v + w; 2v;

−w. Do you see how addition and multiplication corresponds to shifting and

stretching? 0 1 2
0

1 (2,1)v

The set of vectors R
n together with the operation of addition and multi-

plication by a scalar forms a vector space. A vector space is a convenient
structure to work with, because for any v,w ∈ R

n and α, β ∈ R it holds
naturally:

v + w = w + v

α(v + w) = αv + αw

(α + β)v = αv + βv

α(βv) = (αβ)v

Exercise 2: Prove it.

A vector space is a rather simple structure: the only thing we can do in a
vector space, is form linear combinations.

Definition 1.1 (Linear combination) A vector w ∈ R
n is called a linear

combination of vectors v1,v2, . . . ,vk ∈ R
n with coefficients α1, α2, . . . , αk ∈

R if
w = α1v1 + α2v2 + · · · + αkvk. (1)

Exercise 3: Show that any expression consisting only of vector additions and

multiplications by scalars can be transformed to the form (1).

It turns out that the concept of a linear combination is both simple enough
to allow thorough mathematical analysis, and powerful enough to be useful
for practical data analysis.

Exercise 4: Let v1,v2 ∈ R
3. Interpret them as points in space. Convince

yourself that the set of all linear combinations of these two vectors is in fact

the plane passing through points 0, v1 and v2.

Hint: It is the same to say that you can reach any point p on this plane from

0, by first moving some distance along the direction given by v1, and then —

along the direction given by v2.

One very good thing about linear combinations, is that they allow us to
describe large subspaces of R

n using a small set of vectors (like in the exer-
cise above, we could describe a whole plane by just specifying its two basis
vectors). Let’s consider another example.
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Basis in R
n Note that any vector v ∈ R

n can be expressed as a unique
linear combination of vectors

e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

. . .

en = (0, 0, 0, . . . , 1)

with coefficients given by the components of this vector, that is:

0 1
0

1

e1

e2

v = (v1, v2, . . . , vn) = v1e1 + v2e2 + · · · + vnen.

This is a remarkable property of the set of vectors {e1, . . . , en}: we only need
these n vectors to uniquely express any other vector as a linear combination
of them. This property may seem obvious for {e1, . . . , e2}, but there are
other sets of vectors which allow to express any point in R

n as a unique
linear combination, and we introduce a special name for this phenomenon:

Definition 1.2 (Basis in R
n) A set of vectors B = {b1,b2, . . . ,bn} is

called a basis in R
n if any other vector v ∈ R

n can be uniquely expressed as
a linear combination of these vectors:

v = α1b1 + α2b2 + · · · + αnbn.

The coefficients αi are referred to as the coordinates of v in the basis B.

It is not accidental that a basis in R
n has always exactly n elements. After

all, each vector in R
n has n components, so it would be unfair if there

existed an equivalently good representation that required either less or more
information. Not every set of n vectors is a basis, however.

Exercise 5: Show that {(1, 2), (3, 0)} is a basis in R
2.

Exercise 6: Show that {(1, 0)} is not a basis in R
2.

Exercise 7: Show that {(1,−1), (−1, 1)} is not a basis in R
2.

Exercise 8: Show that {(1, 0), (0, 1), (−1, 1)} is not a basis in R
2.

You might wonder: why bother about different bases, if we have that nice
and simple canonical basis {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . }, with which we
started. The reason is that often the canonical basis is not the best one —
viewing vectors in another basis would gain us much more insight. In fact,
a lot of data analysis methods are about transforming the data to another
basis.
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b1

b2

α1b1 + α2b2

Exercise 9: Imagine you are an amateur computer musician. You are compos-
ing new music by mixing together different instruments. The resulting sound
is a long vector s (say, s ∈ R

1000) containing the discretized soundwave. Just
looking at this soundwave won’t tell you much about how does it really sound.
You know, however, that you composed your music from a fixed set of sounds
b1,b2, . . . ,bk. That is,

s = α1b1 + α2b2 + · · · + αkbk.

That means that for you, the basis {b1,b2, . . . ,bk} provides a much more

convenient way of looking at the data. Explain. Think of more examples like

that.

For now, we have defined the basis in R
n. But recollect the example of

exercise 4. Assume that the vectors v1 are v2 are not collinear (i.e. v1 6=
αv2) and consider again the set L of all possible linear combinations of these
vectors — the plane built on v1 and v2. It is possible to show, that every
point on this plane can be uniquely represented as a linear combination of
{v1,v2}, that is, the vectors v1 and v2 form a basis for L.

Exercise 10: Prove it. Hint: Assume the contrary and show that then neces-

sarily v1 = αv2.

Once again, {v1,v2} is not the only possible basis of L, we could have built
the same plane using other basis vectors. However, we shall always need 2
vectors in the basis of L, because L is a 2-dimensional subspace of R

3.
Now that we have been talking about subspaces, linear combinations and
basis vectors long enough, let us define them in a rigorous manner.

Definition 1.3 (Subspace) A subset S of R
n is called a subspace of R

n

if S is closed under addition and multiplication by scalar. That is, for each
v,w ∈ S and α ∈ R:

v + w ∈ S, αv ∈ S.

In other words, a subspace is a subset of R
n which is itself a vector space.

Exercise 11: Let S be a subspace of R
n and let v1,v2, . . . ,vk ∈ S. Show that

any linear combination of these vectors belongs to S.

It follows, that we could have defined a subspace as something closed with
respect to linear combinations, which should explain why the notion of a
subspace is so important (at least if we are interested in linear combinations).
The definition given above is, however, more convenient to use when you
need to check whether a given subset is a subspace.

Exercise 12: Prove that the set {0} is a subspace of R
n.

Exercise 13: Prove that the set {(x, y) |x ∈ [0, 1], y ∈ [0, 1]} is not a subspace

of R
2.

Exercise 14: Prove that the set {(x, x2) |x ∈ R} is not a subspace of R
2.
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Exercise 15: Prove that if S is a subspace of R
n then 0 = (0, 0, . . . , 0) ∈ S.

Exercise 16: Prove that any straight line passing through zero is a subspace

of R
2.

It makes sense to think of subspaces as straight lines or planes passing
through zero: these are exactly the subspaces in R

3. Don’t forget, however,
that in higher dimensions (e.g. R

5), subspaces of dimensionality 4 and 5 are
possible, and it’s not that simple to visualize those.
How can we construct subspaces? We can take a set of vectors and try
building all possible linear combinations of these vectors (their linear span).
Naturally, such procedure will always produce a subspace.

Definition 1.4 (Linear span) Let v1,v2, . . . ,vk ∈ R
n. The set of all lin-

ear combinations of these vectors:

L = {λ1v1 + λ2v2 + · · · + λkvk |λi ∈ R}

is called the linear span of v1,v2, . . . ,vk and denoted as

span(v1,v2, . . . ,vk).

span(v1,v2)

Exercise 17: Let v1,v2, . . . ,vk ∈ R
n. Show that span(v1,v2, . . . ,vk) is a

subspace of R
n.

Exercise 18: Show that the linear span of the canonical basis is the space R
n.

Now, given a set of vectors, we can always produce a certain subspace by
taking the linear span of these vectors. Conversely, if we are given a sub-
space, can we find a set of vectors that has this subspace as a linear span?
It turns out we can, and we’ll be interested in the smallest such set.

Exercise 19: Let S = span(v1,v2).

Show that then also S = span(v1,v2,v1 + v2).

Definition 1.5 (Basis) Let S 6= {0} be a subspace of R
n. A set of vectors

B = {b1,b2, . . . ,bk} is called a basis in S if S = span(b1,b2, . . . ,bk) and
it is not possible to make this set smaller (i.e. it is not possible to construct
S by taking the span of less than k vectors of B).

Note once more, that a basis is not just any “construction set” for a subspace
S, but the smallest such set. That is, there are no “excessive” vectors in a
basis, and it results in a very remarkable property — any vector in a subspace
has a unique representation as a linear combination of the basis vectors. In
fact we could have even defined basis as a “set of vectors allowing a unique
representation for any other vector in a subspace”. Let us demonstrate that
this is the case.

Exercise 20: Let B = {b1,b2, . . . ,bk} be a set of vectors. Suppose bk can be

expressed as a linear combination of other vectors in B. Show that B is not a

basis of span(B).
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Exercise 21: Let B be a set of vectors and let S = span(B). Suppose there
exists a vector v ∈ S that can be expressed as two different linear combinations
of B:

v = α1b1 + · · · + αkbk = β1b1 + · · · + βkbk.

Show that then one of the vectors in B can be expressed as a linear combination

of the others.

Exercise 22: Let B be a basis of S. Show that any v ∈ S can be expressed as

a unique linear combination of the basis vectors. (Hint: use the results of two

previous exercises)

We have just seen that a set of vectors can be a basis only if none of these
vectors can be expressed via the others. There is a special name for that
property.

Definition 1.6 (Linear independence) We say that a set of vectors v1,
v2, . . . , vk is linearly independent if there exists no linear combination of
these vectors, apart from the one where all the coefficients are zeros, that is
zero. That is,

α1v1 + α2v2 + · · · + αkvk = 0

only holds when α1 = α2 = · · · = αk = 0.

b

a

a,b are linearly
independent

b

a
c

a,b, c are not
linearly inde-
pendent because
c = a + b

Exercise 23: Show that a set of vectors is not linearly independent iff it is

possible to express one of the vectors as a linear combination of the others.

Exercise 24: Show that if B is a basis of S, then B is linearly independent.

So it turns out that a basis of a subspace S is a linearly independent set
of vectors that has this subspace as its span. Importantly, any subspace
always has a basis. The size of any basis of a subspace is known as the
dimensionality of the subspace.

Theorem 1.1 Any subspace S 6= {0} of R
n has a basis.

Theorem 1.2 Let S be a subspace of R
n. Let B1 and B2 be two different

bases of S. Then |B1| = |B2| ≤ n. We say that |B1| is the dimensionality
of S and denote it by dim(S). For the special case of S = {0} we define
dim(S) = 0.

Exercise 25: Let L = {(x, y, 0) |x, y ∈ R
n}. Show that L is a subspace of R

n

and find some basis of L. What is the dimensionality of L?

Exercise 26: Let S be a d-dimensional subspace. Show that any set of more

than d vectors is not linearly independent.

The notions and properties introduced in this section can all be summarized
in one short sentence: a d-dimensional subspace of R

n is a linear span of d

linearly independent vectors. These vectors form a basis of this subspace. !
Exercise 27: Prove it.
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Norm and Inner Product. Let’s now get back to reality for a moment.
It is most natural to view R

n as a formalization and generalization of the
three-dimensional space we are living in, the elements corresponding to lo-
cations or directions. The next best thing to do is therefore to define ways
of measuring angles and distances. We define the norm or length of a vector
v as:

‖v‖ :=
√

v2
1

+ v2
2

+ · · · + v2
n.

Exercise 28: Show that if we naturally map points in our world to elements

of R
3, then distance between points a and b must be equal to ‖a − b‖.

Exercise 29: Show that ‖αv‖ = α‖v‖.

For measuring angles we define the inner product of two vectors v and w as
follows:

〈v,w〉 := v1w1 + v2w2 + · · · + vnwn.

Exercise 30: Consider the plane R
2. Prove that 〈v,w〉 = ‖v‖‖w‖ cosα where

α is the angle between the vectors.

Hint: Use the equation: cos(α − β) = cosα cosβ + sin α sin β.
0 1 2

0

1
α v

w

Exercise 31: Let ‖v‖ = 1. Show that 〈w,v〉 is the length of the orthogonal

projection of w onto the line defined by v.

Exercise 32: Let ‖v‖ = ‖w‖ = 1 and 〈v,w〉 = 0. Show that for any x ∈ R
2:

x = 〈x,v〉v + 〈x,w〉w.

That means that {v,w} is a basis in R
2. It is possible to show that, in general,

a set of n pairwise orthogonal vectors is always a basis in R
n. Moreover in any

d-dimensional subspace of R
n there exists an orthogonal basis.

Exercise 33: Prove that 〈v,v〉 = ‖v‖2 for any v ∈ R
n.

Exercise 34: Prove that inner product is symmetric, (bi)linear and positive
definite:

〈v,w〉 = 〈w,v〉

〈αv + w,x〉 = α〈v,x〉 + 〈w,x〉

〈v,v〉 = 0 ⇔ v = 0

Exercise 35: Prove that ‖v + w‖ ≤ ‖v‖ + ‖w‖ (The triangle inequality).

‖w‖

‖v‖

‖v + w‖

Triangle inequalityExercise 36: Prove the Cauchy-Schwarz inequality: 〈v,w〉 ≤ ‖v‖‖w‖.

Hint: Consider
∥
∥
∥‖v‖w − 〈v,w〉

‖v‖ v
∥
∥
∥

2

. Rewrite it as inner product and “open the

brackets”.

Exercise 37: Let v ∈ R
n. Show that S = {w | 〈v,w〉 = 0} is a subspace of

R
n. S is called the orthogonal space of v.

The set R
n together with operations of addition, multiplication by scalar,

the norm and the inner product forms a euclidian space.
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2 Matrix Notation

An n × m matrix is a table of real numbers with n rows and m columns.
For example the following is a 2 × 3 matrix:

(
2 7.1 0.82

8.18 2.8 4

)

We denote matrices by capital boldface letters (e.g. A,B). The element of
matrix A at row i and column j will be denoted as (A)ij or aij so:

A =








a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

an1 an2 . . . anm








It is customary to use the shorthand:

A = (aij).

We denote the set of all n × m matrices by R
n×m.

Similarly to how addition and multiplication by scalar was defined for the
vectors in R

n, we define matrix addition and multiplication of a matrix by
a scalar componentwise:

A + B = (aij) + (bij) = (aij + bij)

αA = α(aij) = (αaij)

It is easy to see that the set of n×1 matrices with addition and multiplication
by a scalar corresponds exactly to the vector space R

n. Therefore from now
on, we use single-column matrices to denote vectors and make no difference
between R

n and R
n×1. For example:

v =

(
v1

v2

)

Let

A =

(
2 7 0
8 2 4

)

.

Then

AT =





2 8
7 2
0 4



 .

The operation of “mirroring” a matrix so that its rows become columns and
vice versa is known as transposition. That is, the transpose AT of a n × m

matrix is a m × n matrix, for which

(AT )ij = (A)ji

The transpose of an n-element vector v is a 1 × n matrix vT .
At last, we define the operation of matrix multiplication. Let A ∈ R

n×l and
B ∈ R

l×m. Then the product AB is an n × m matrix with entries:

(AB)ij =
l∑

k=1

aikbkj.

8



Note that you can’t multiply any two matrices: the number of columns of
the first term in the product must be equal to the number of rows of the
second one.

Exercise 38: Show that Av is a linear combination of the columns of A, with

coefficients being the components of v.

Exercise 39: Let v,w ∈ R
n. Show that 〈v,w〉 = vT w. Due to this, in the

following we shall avoid the 〈·, ·〉 notation in favor of matrix multiplication.

Exercise 40: Let vT
1
,vT

2
, . . . ,vT

n ∈ R
1×l be the rows of A and w1,w2, . . . ,wm ∈

R
l×1 — the columns of B. Show that (AB)ij = vT

i wj .

b
vT

i wj
vT

i

wj

A

B

AB

Exercise 41: Show that matrix multiplication is associative: (AB)C = A(BC).

Exercise 42: Show that matrix multiplication is distributive:

(A + B)C = AC + BC.

Exercise 43: Show that (AB)T = BT AT .

Exercise 44: Find the matrix I ∈ R
n×n for which IA = A for any A ∈ R

n×m.

I is called the identity matrix.

Exercise 45: Show that in general AB 6= BA.
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3 Linear Functions

As you remember, the two most basic things we could do with vectors in
R

n were addition and multiplication by scalars. In this part we shall try to
do something useful with the vectors without losing this structure. That is,
we shall examine all possible functions f that preserve addition and scalar
multiplication (which means, preserve linear combinations).

Definition 3.1 (Linear function) A function f : R
m → R

n is called lin-
ear if for each v,w ∈ R

m, α ∈ R:

f(αv + w) = αf(v) + f(w)

Exercise 46: Show that f(x) = wT x is a linear function.

Exercise 47: Show that f(x) = x is a linear function.

Exercise 48: Let B be some basis in R
n. Let f(v) return the vector of coor-

dinates of v in basis B. Show that f is a linear function.

Exercise 49: Consider vectors in R
2, interpret them as arrows. Show that

rotation around 0 on a fixed angle α is a linear function.

Exercise 50: Show that f(v) = v + c for c 6= 0 is not a linear function.

Exercise 51: Let f : R
m → R

n be a linear function. Show that f(0) = 0.

Exercise 52: Let f : R
l → R

n and g : R
m → R

l be linear functions. Show that

f ◦ g is also a linear function. (f ◦ g(x) = f(g(x))).

Exercise 53: Show that a linear function maps a subspace to a subspace.

The class of linear functions can be described as the class of all possible
projections, reflections, rotations and shears: those functions that transform
straight lines into straight lines or single points (but never into curves!) and
keep the zero intact.
Let {e1, e2, . . . , en} be the canonical basis in R

n. Then each vector can be
represented as

v = v1e1 + v2e2 + · · · + vnen.

But then if f is a linear function:

f(v) = v1f(e1) + v2f(e2) + · · · + vnf(en).

Exercise 54: Prove it.

That means, that in order to completely define a linear transformation,
you only need to specify how it transforms the vectors of the canonical
basis. Now let us construct a matrix F, with columns being the vectors
f(e1), f(e2), . . . , f(en). It holds then:

f(v) = Fv.
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Exercise 55: Prove it. Show that each linear transformation f : Rm → Rn

corresponds uniquely to a matrix F ∈ R
n×m and vice versa. !

Exercise 56: If you were wondering why matrix multiplication was defined like

it was — here is the answer. Let F ∈ R
n×l correspond to linear function f and

let G ∈ R
l×m correspond to linear transformation g. Show that matrix FG

corresponds to linear transformation f ◦ g.

Exercise 57: Show that (f ◦ g) ◦ h = f ◦ (g ◦ h) for any transformations f, g, h.

Show how it follows that matrix multiplication is associative.

Exercise 58: Let id : R
n → R

n be the identity transformation, ie id(x) = x.

Show that the matrix corresponding to it is the identity matrix I.

0 1 2
0

1

0 1 2
0

1

(
2 0.5
0 1

)

We have just discovered a very remarkable fact: linear functions and matri-
ces are equivalent. Every time someone is talking about matrices you may
think about linear functions. Every time someone says “linear function” —
you know he means “matrix”. It also provides a useful way of interpreting
matrices. You know how to interpret vectors as arrows, right? Now you
interpret a matrix as a set of arrows corresponding to the columns of the
matrix. This set of arrows shows how the matrix transforms the canonical
basis.

Invertible Transformations

Definition 3.2 (Invertible function) We say that a function f : R
m →

R
n is invertible if there exists a transformation f−1 : R

n → R
m such that

for any v ∈ R
m f−1(f(v)) = v. That is, f−1 can “undo” what f does. We

call f−1 the inverse of f .

Exercise 59: If f is invertible, is f−1 necessarily also invertible? When is it?

Exercise 60: Let f : R
n → R

n be invertible. Show that f maps any d-

dimensional subspace into a d-dimensional subspace.

Hint: First show that f maps linearly independent sets to linearly independent

sets.

Exercise 61: Let f : R
n → R

n be invertible. Show that f−1 is then also

invertible and (f−1)−1 = f .

Exercise 62: Let id : R
n → R

n be the identity transformation and let f :

R
n → R

n be invertible. Show that f ◦ f−1 = f−1 ◦ f = id.

It follows from above that it makes most sense to speak about invertible
transformations from R

n to R
n. Otherwise we can only “undo” transfor-

mations that map points from a lower dimensional space into a higher di-
mensional space, but not vice versa. So next time, when we say invertible
transformation, we mean the case of R

n → R
n.
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Let f : R
n → R

n be an invertible linear transformation. We call the n × n

matrix F, corresponding to this transformation invertible, and the matrix
F−1, corresponding to f−1 is called the inverse of F.

Exercise 63: Let F be an invertible n × n matrix.

Show that FF−1 = F−1F = I.

Exercise 64: Let A be an invertible matrix and let Ax = y.

Show that x = A−1y.

Exercise 65: Let B = {b1,b2, . . . ,bn} be a basis in R
n. Let f be a function

that, given a vector v ∈ R
n returns its coordinates in basis B. Show that

f(v) = B−1v, where B is a matrix with columns b1,b2, . . . ,bn.

Hint: Show that if w = f(v) then v = Bw.

Exercise 66: Find the inverse of

(
2 0
0 −2

)

.

Exercise 67: Find the inverse of

(
1 0
1 1

)

.

Invertible transformations turn out to be very useful, so it’s important to
know how they differ from the noninvertible ones. Clearly, a function is in-
vertible if and only if it maps different arguments to different values. (Oth-
erwise, if for some v1 6= v2 we have f(v1) = f(v2) = w, we can’t really
tell by only looking at w, whether it came from v1 or v2.) Linear functions
are even more interesting in that respect. Let f be a noninvertible linear
function. That is, let there exist v1 6= v2 such that f(v1) = f(v2). It easily
follows from it, that there must be a whole subspace that f maps to 0.

Exercise 68: Let f(v1) = f(v2) for v1 6= v2. Show that there exists s 6= 0

such that f(αs) = 0 for any α ∈ R.

Exercise 69: Show that the set of all v ∈ R
n for which f(v) = 0 is a subspace.

In the following we shall denote the subspace of all vectors that f maps to
0 by Ker(f). That is,

Ker(f) = {v | f(v) = 0}

If the only vector that f maps to 0 is 0 (i.e. Ker(f) = {0}), then f is
certainly invertible. !

Exercise 70: Prove it.

Here’s another important observation. An invertible function maps the
whole space R

n onto the whole space. Which is the same to say that it
maps the basis of R

n to some other basis of R
n.

Exercise 71: Show that if f maps some basis of R
n to a non-basis then f is

not invertible.

Therefore the columns of the corresponding matrix must be linearly inde-
pendent.

Exercise 72: Prove it.
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Conversely, let the columns of a matrix be linearly independent. Then the
corresponding f is certainly invertible.

Exercise 73: Prove it.

Which makes us conclude: f is invertible iff the columns of F are linearly
independent. !
Suppose now that f is not invertible. As we’ve noted above, f should map
R

n to some lower-dimensional subspace of R
n. The dimensionality of this

space is an important parameter as it tells us how much information f

“preserves”.

Definition 3.3 (Rank) Let f : R
n → R

m and let S = {f(v) |v ∈ R
n}.

We call dim(S) the rank of f and denote by rank(f).

Note that rank is defined for any linear transformations, not only R
n →

R
n.

Exercise 74: Find rank

(
1 0
0 0

)

.

Exercise 75: Show that f is invertible iff rank(f) = n.

Exercise 76: Consider f : R
3 → R

3. Show that: a) if f is invertible then

rank(f) = 3; b) if f projects all points to some plane, then rank(f) = 2; c) if

f projects all points to some line then rank(f) = 1; d) if f maps every point

to 0 then rank(f) = 0.

Exercise 77: Show that rank(FG) ≤ min(rank(F), rank(G)).

Exercise 78: Show that rank(F) = rank(FT ).

Hint:

First show that Ker(F) = Ker(FT F) by using the fact that ‖Fv‖2 = vT FT Fv.

Follow from it that rank(F) = rank(FT F) and hence rank(F) ≤ rank(FT ).

At last, note that by symmetry rank(FT ) ≤ rank(F).

We conclude this with one more insightful observation. We’ve noted above
that a noninvertible f maps some subspace of R to 0. The dimensionality
of this subspace therefore indicates how much information f “loses”. Now,
if dim(Ker(f)) is the dimensionality “lost” by f and rank(f) is the dimen-
sionality “preserved” by f , it would make sense to have their sum equal to
n. This actually holds true.

Theorem 3.1 Let f : R
n → R

m be a linear transformation. Then

dim(Ker(f)) + rank(f) = n.

13



Orthogonal Transformations A particularly interesting class of linear
transformations is formed by those that preserve angles and distances. These
are precisely all the rotations and mirrorings.

Preserves angles

Doesn’t preserve
angles

Definition 3.4 (Orthogonal transformation) We say that a linear trans-
formation f : R

n → R
n is orthogonal, if it preserves the inner product. That

is, for any x,y ∈ R
n:

〈x,y〉 = 〈f(x), f(y)〉.

It turns out that an orthogonal transformation is always invertible, and the
matrix F of an orthogonal transformation f has a nice property: F−1 = F
(which can sometimes be very convenient: while inverting matrices is in
general rather complicated, for orthogonal functions it’s trivial!) . To show
that, we first note that an orthogonal transformation maps an orthonormal
basis to an orthonormal basis.

Definition 3.5 (Orthonormal basis) Let S be a subspace of R
n and B

be a basis in it. We say that B is orthonormal if all the vectors in B are of
unit length and pairwise orthogonal. That is:

‖bi‖ = 1, and 〈bi,bj〉 = 0, if i 6= j.

0 1
0

1

b1

b2

Exercise 79: Let B be a matrix, the columns of which are orthonormal. Show

that BTB = I.

Exercise 80: Let f be an orthogonal transformation. Show that f maps an

orthonormal basis to an orthonormal basis.

Exercise 81: Let F be an orthogonal matrix. Show that FTF = I. (Hint:

Show that columns of F are orthogonal.)

To summarize, orthogonal transformations correspond to rotations and mir-
rorings, they preserve angles and distances, the columns of an orthogonal
matrix form an orthonormal basis, and the inverse of an orthogonal matrix
is simply its transpose. !

Symmetric Transformations Another interesting class of transforma-
tions are symmetric transformations.

Definition 3.6 (Symmetric transformation) We call a linear transfor-
mation f symmetric if its matrix F is symmetric, i.e. F = FT .

Exercise 82: Let f be a symmetric transformation. Show that 〈f(x),y〉 =

〈x, f(y)〉.

One simple example of a symmetric transformation is given by a diagonal
matrix — a matrix whose nonzero elements are only on the diagonal. Such
a transformation performs a scaling along the coordinate axes.

14



Exercise 83: Examine the symmetric transformation given by the matrix
(

2 0
0 1

)

. How does it transform the points of the plane?

It turns out that all the symmetric transformations are in a sense similar
to such diagonal scaling, with the only difference that in general the scaling
is not performed along the coordinate axes, but maybe along some other
orthogonal set of directions.

Exercise 84: Let B be an orthonormal basis in R
n. Let B be a matrix that

transforms the canonical basis to B. Let D be some diagonal matrix with

entries d1, d2, . . . , dn on the diagonal. Show that the matrix F = BDBT is

a transformation, that scales all the vectors along direction b1 by d1, all the

vectors along b2 by d2, etc. Show that F is a symmetric matrix.

Theorem 3.2 Any symmetric matrix F can be represented as:

F = BDBT , (2)

where B is orthogonal and D a diagonal matrix. !

Eigenvalues and Eigenvectors We have just seen that a symmetric
matrix in fact performs a scaling along certain orthogonal directions. These
directions, and the factors of scaling are often of special interest, hence they
have a special name.

Definition 3.7 (Eigenvalues and Eigenvectors) Let f : R
n → R

n be a
linear transformation. If for some v ∈ R

n, v 6= 0 there exists α ∈ R such
that

f(v) = αv,

we call v an eigenvector of f , and α — the corresponding eigenvalue.

Exercise 85: Let v be an eigenvector of f . Show that cv is also an eigenvector

for any c 6= 0.

Exercise 86: Show that all the eigenvectors of f corresponding to a given

eigenvalue α form a subspace.

Exercise 87: Suppose you know eigenvectors and eigenvalues of f . What can

you say about eigenvectors and eigenvalues of f−1?

Exercise 88: Let F be symmetric, and let F = BDBT the decomposition

given in theorem 3.2. Show that each column of B is an eigenvector of F, and

the corresponding eigenvalues are given by the diagonal elements of D.

Exercise 89: Show that it is possible to construct an orthonormal basis from

the eigenvectors of a symmetric matrix.

Although the notion of eigenvalues and eigenvectors is most often used in
the context of symmetric matrices, it is not necessarily always the case.
Eigenvectors of nonsymmetric matrices may sometimes also be of interest.
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Exercise 90: Let V be an invertible transformation and D a diagonal matrix.

Find the eigenvectors and eigenvalues of F = VDV−1.

Finding the eigenvectors of a matrix really means trying to represent it in
the form F = VDV−1. Such representation is often very insightful, as it
immediately shows the vectors that are “most important” with respect to
the transformation F. The eigenvectors (given by the columns of V) can
provide us with a very convenient basis for our data: when we represent the
data in this basis, the transformation F is nothing more than a coordinate-
wise scaling given by the diagonal matrix D.
By just looking at the eigenvalues of F (the spectrum of F) we can immedi-
ately see how F works: which directions are “amplified”, which are preserved
and which are mapped to 0 (these correspond to zero eigenvalues).

Exercise 91: Let F = VDV−1 with D a diagonal matrix. Show that the

number of nonzero entries on the diagonal of D is equal to rank(F).

If the spectra of two different matrices are equal, such matrices may often
be considered equivalent, in a certain sense. Of course, not every matrix can
be represented like that. For example, 2D rotations have no eigenvectors.

Exercise 92*: Have you ever wondered, why sine-waves are considered so im-

portant in sound processing? Well, the answer is, that sine-waves are precisely

the eigensignals of time-invariant linear transformations.

Exercise 93*: Covariance matrix is a matrix, commonly used in data analysis.

It’s a symmetric matrix Σ, with the property that for a data point x, the

product xT Σ−1x indicates how “interesting” (improbable) the point x is —

the larger, the better. Show how the eigenvalue decomposition (2) of Σ can

provide a more convenient basis for the data.

16



Determinant As we know, a linear transformation can be described by
saying what it does to the canonical basis. Consider the parallelogram built
on the vectors of the canonical basis. That is, consider the “unit-hypercube”

U = {(v1, v2, . . . , vn) | vi ∈ [0, 1]}.

In one-dimensional case this is just the segment [0, 1], in two-dimensional
case — the square [0, 1] × [0, 1], in three-dimensional case — the cube
[0, 1] × [0, 1] × [0, 1] and in higher dimensions it’s some analogous object.
It corresponds to our notion of a “hypercube” and it’s “volume” (which is
length in R

1 and area in R
2) is 1, hence the name “unit hypercube”.

Let’s ask, for a given linear transformation f , how does it transform this
unit hypercube. Does it stretch it or shrink it? Does it mirror it? Make
it “flat”? Such knowledge often turns out to be useful: for example, if we
know that f shrinks the unit hypercube to half the size, we can immediately
deduce that f performs such shrinking for any set of points; if we know that
f “flattens” the n-dimensional hypercube to a lower-dimensional hypercube,
we can conclude that f is not invertible, etc.

Exercise 94: Examine the statements above in detail and prove them.

So, the question we’re interested in is, given a linear transformation f , what
is the volume of f(U)? If U is a hyper-parallelepiped built on the vectors of
the canonical basis, then f(U) is a hyper-parallelogram built on the vectors
f(ei), so another way to ask the same question is: given a matrix F, what
is the volume of the parallelogram built on the columns of this matrix?

Exercise 95: Consider F =

(
1 0.5
0 0.5

)

. Draw the parallelogram to which F

transforms the unit square. What is the area of this parallelogram?

A last twist before the final definition: not only shall we be interested in the
volume of f(U), but rather the signed volume of it. Intuitively, we shall say
that the volume of f(U) is negative, if f had to “mirror” the unit hypercube
inbetween in order to obtain f(U).

Exercise 96: Consider F =

(
0 1
1 0

)

. Show how F transforms the unit

square. Do you see that although the square itself is left intact, its orientation

has changed (i.e. it has been mirrored)? In this case we say that the signed

volume of f(U) is −1 rather than 1.

Definition 3.8 (Determinant) Let f : R
n → R

n be a linear transforma-
tion and let the corresponding matrix be F. We define the determinant of
f as the signed volume of the parallelogram built on the columns of F. The
determinant is denoted as det(f) (or det(F)).
Sometimes it is convenient to speak of the determinant of a set of vectors
{v1,v2, . . . ,vn} (which is still the signed area of a parallelogram built on
these vectors). Then we use the notation det(v1,v2, . . . ,vn).
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If f1, f2, . . . , fn are the columns of F, then by definition

det(F) = det(f1, f2, . . . , fn).

Determinant satisfies four important properties: !
1. The identity transformation does not change the volume of the hyper-

cube:
det(e1, e2, . . . , en) = det(id) = 1.

2. By exchanging any two columns, we change the orientation of the
parallelogram, but not its area:

det(f1, f2, . . . , fn) = − det(f2, f1, . . . , fn).

3. The area of a sum of two parallelograms is the sum of their areas. In
other words, determinant is linear in every column:

det(αf1 + g1, f2, . . . , fn) = α det(f1, f2, . . . , fn) + det(g1, f2, . . . , fn).

4. If two columns are equal, the corresponding area is 0 (i.e. the corre-
sponding parallelogram is “flat”):

det(f1, f1, f3, f4, . . . , fn) = 0.

It is remarkable that these four properties define determinant uniquely.
Exercise 97*: Express det(F) in terms of the matrix elements fij .

Hint: First express each column of F as fi = f1ie1 + f2ie2 + · · · + fnien. Use

linearity (property 3) to “open the brackets” and rewrite det(F) as a big sum.

At last, apply properties 1 and 4 to evaluate each element of the sum.

There are lots of things which you can discover about the determinant, here
are some of them:

Exercise 98: Let D be diagonal. Show that det(D) is the product of the

diagonal elements of D.

Exercise 99: Show that det(αF) = αn det(F).

Exercise 100: Show that det(FG) = det(F) det(G).

Exercise 101: Show that det(F) = 0 iff the columns of F are linearly indepen-

dent (i.e. f is not invertible).

Exercise 102: Let F be orthogonal. Show that | det(F)| = 1.

Exercise 103: Let F = VDVT be symmetric. Show that det(F) = det(D) =

the product of the eigenvalues of F.
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4 Final Bonus

Although not even close to being complete, the text above hopefully cov-
ers most of the important linear algebra notions required in everyday data
analysis. Before letting you go, though, I’d like to mention yet some other
objects, which, at least to my experience, pop up quite often in practice.
As they don’t fit too well in the theory of linear functions presented above,
they are presented just as a free addon.

Trace

Definition 4.1 (Trace) Let A be a n×n matrix. The trace of A, denoted
by tr(A), is the sum of the diagonal elements of A:

tr(A) =
∑

i

aii

The typical context when trace shows itself is the following: suppose we
have two n × m matrices A and B, and we wish to define an inner product
〈A,B〉 of these matrices, by simply interpreting them as long vectors with
nm elements, and using the inner product of these vectors. That is,

〈A,B〉 =
∑

i,j

aijbij .

It turns out that in this case, 〈A,B〉 = tr(ATB) = tr(BAT ).
Exercise 104: Prove it.

Exercise 105: Prove that tr(A) = tr(AT ).

Exercise 106: Prove that tr(ABC) = tr(CAB).

Bilinear functionals

Definition 4.2 (Bilinear functional) A function b : Rn × Rm → R is
called a bilinear functional if it’s linear in both its arguments. That is:

b(αx1 + x2,y) = αb(x1,y) + b(x2,y)

b(x, αy1 + y2) = αb(x,y1) + b(x,y2)

Similarly to linear functions, bilinear functionals turn out to be quite com-
mon and useful. The simplest example of a bilinear functional is the inner
product.

Exercise 107: Show that inner product is a bilinear functional.

Similarly to linear functions, it is possible to describe bilinear functionals
using matrices, although in a slightly different way.
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Theorem 4.1 Any bilinear functional b can be represented as:

b(x,y) =
∑

i,j

aijxiyj = xTAy

for a certain matrix A.

Exercise 108: Prove it. Hint: Repeat the logic used for linear functions.

Represent x and y in the canonical basis and use the linearity.

Make note of the equality
∑

i,j aijxiyj = xTAy. It’s sometimes useful.

Quadratic forms

Definition 4.3 (Quadratic form) Let b : R
n×R

n → R be a bilinear func-
tional. The function q(x) = b(x,x) is called a quadratic form corresponding
to b.

Exercise 109: Prove that any quadratic form q can be represented as q(x) =

xT Ax where A is a symmetric matrix.

Exercise 110: Let q be a quadratic form with A the corresponding matrix.

Show that q(x + y) = q(x)2 + 2xTAy + q(y)2.

Exercise 111: Show that q(x) = ‖x‖2 is a quadratic form.

v2

v1

Exercise 112: Let’s examine a quadratic form defined for vectors in R
2. Sup-

pose q(x) = xTAx with A symmetric and x ∈ R
2. As A is symmetric, it

has two unit orthogonal eigenvectors, call them v1 and v2. Draw them on

the plane. Let the corresponding eigenvalues be λ1 and λ2. Examine the val-

ues of q on the lines defined by these vectors (show that q(αv1) = λ1α
2 and

q(αv2) = λ2α
2). Try to imagine how q looks in general. Do you see that it is

either a paraboloid or a saddle-like surface (depending on the signs of λ1 and

λ2?
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Definition 4.4 (Positive definiteness) The quadratic form q is said to
be positive definite if q(x) > 0 for all x 6= 0. We say that q is negative
definite if q(x) < 0 for all x 6= 0. If the equalities are not strict, we say that
q is positive semidefinite or negative semidefinite correspondingly.
The same terms are applicable to any matrix A. For example, we say that
A is positive definite if xTAx > 0 for any x 6= 0.

Positive definiteness or negative definiteness can be easily described via the
eigenvalues of A (and in most cases positive/negative definiteness is dis-
cussed for symmetric matrices, which, as we know, have all the eigenvec-
tors).

Exercise 113: Consider a diagonal matrix D and the corresponding quadratic

form q(x) = xT Dx. Show that q is positive definite iff all the diagonal elements

of D are positive and q is negative definite iff all the diagonal elements are

negative.

Exercise 114: Now consider a symmetric matrix A. Use the eigenvalue de-

composition (2) to show that A is positive definite iff all its eigenvalues are

positive, and negative definite iff all the eigenvalues are negative.

Exercise 115: Show that if A is positive definite, it is invertible.

5 Summary

To summarize, here’s the contents of this brief guide all in four paragraphs.
Very often data can be represented in terms of vectors. We introduce

addition and multiplication by scalar for vectors, and this allows us to form
linear combinations. These, in turn, allow to examine subspaces. Every
subspace has a basis, that allows to represent vectors in a given subspace in
a unique manner.

Norm and inner product formalize the notions of distances and angles
between vectors. Of particular interest are orthogonal vectors — these being
in a sense “completely independent”.

Linear functions are functions defined on vectors, that preserve linear
combinations. Linear functions correspond uniquely to matrices and can
be analyzed quite thoroughly. For example, the rank of a linear function
indicates how much information it preserves, its determinant indicates how
it scales the vectors, and its eigenvectors and eigenvalues show the directions
in which the scaling is performed. Of particular interest are subclasses of
linear functions such as orthogonal or symmetric functions. The former
ones preserve angles and distances and correspond to rotations, and the
latter ones correspond to scalings along orthogonal directions.

At last, bilinear functionals and quadratic forms can be often met in
practice, so it’s important to know what are they and how they relate to
matrices.
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