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Abstract Arti�cial intelligence researchers have been
attracted by the idea of having robots learn how to
accomplish a task, rather than being told explicitly.
Reinforcement learning has been proposed as an appealing
framework to be used in controlling mobile agents. Robot
learning research, as well as research in biological systems,
face many similar problems in order to display high �exibility
in performing a variety of tasks. In this work, the controlling
of a vehicle in an avoidance task by a previously developed
operant learning model (a form of animal learning) is
studied. An environment in which a mobile robot with
proximity sensors has to minimize the punishment for
colliding against obstacles is simulated. The results were
compared with the Q-Learning algorithm, and the proposed
model had better performance. In this way a new arti�cial
intelligence agent inspired by neurobiology, psychology, and
ethology research is proposed.

1 Introduction

Much of the research on autonomous robots is focused on solving a relatively small
variety of problems, providing in this way a common framework to compare how
different strategies are able to solve them. Obstacle avoidance is one of the most
common tasks in which new algorithms are compared with known ones. Some of them,
because of their simplicity, robustness, and mathematical tests of convergence, are
used as benchmarks. A good example is Q-Learning [28, 34], a reinforcement learning
algorithm, whose application varies from box-pushing [21] to elevator dispatching tasks
[6].

Reinforcement learning is the problem faced by an agent that must learn behav-
ior through trial-and-error interaction with a dynamic environment [18]. It relies on
the association between a goal and a scalar signal, which can be either a reward or
a punishment. The objective is to �nd the policy that maximizes rewards (or mini-
mizes punishments). In the particular case of obstacle avoidance, when a mobile robot
contacts an obstacle, it is punished.

Algorithms such as Q-Learning are not restricted by biological constraints and are
built with the aim of solving different kinds of problems. Touretzky and Saksida [31]
said that mobile robots trained by methods such as Q-Learning have not come close
to matching the sophistication, versatility, and adaptation of animals. They suggested
that closer attention to the animal training literature and a serious attempt to model
the effects described there might yield bene�ts of immediate value to robot learning

¤ Requests for reprints should be send to Dr. Zanutto.

c° 2004 Massachusetts Institute of Technology Arti�cial Life 10: 65–81 (2004)



D. A. Gutnisky and B. S. Zanutto Learning Obstacle Avoidance

researchers, and also provide a new, computationally oriented perspective on animal
learning.

On the other hand, simple arti�cial animals (animats), which operate as autonomous
adaptive robots in the real world, can serve both as models of biological behavior and
as a radical alternative to conventional methods of designing intelligent systems [9].
According to McFarland and Bösser [22], it has been recently realized that robots might
better be designed along the zoological lines of primitive animals than along the tradi-
tional lines of autocratic control. Dean [10] says that the animat approach is the most
recent attempt to simulate the adaptive behavior characteristic of animals as well as the
acquisition of this competence. Moreover, he points out that both in analysis and de-
sign, the animat approach borrows heavily from ethology, psychology, neurobiology,
and evolutionary biology. Animat studies can also be useful for studying emergent be-
havior in biological systems [30]. For arti�cial intelligence (AI) and robotics researchers,
understanding the mechanisms behind adaptive behavior is secondary to creating them,
but natural scientists can hope for tools and concepts to aid understanding of biological
systems. It is clear that if we knew how animals controlled their behavior, this might
provide us new ideas about how to make robots do it.

In line with this proposed approach, recent research showed how models inspired
by psychological research can be used to control mobile robots [5, 14, 32]. The mo-
bile robot Mavin [2] was one of the �rst attempts to control a mobile robot based on
observations derived from the behavioral literature.

Here a previously developed model of operant learning capable of avoiding obsta-
cles is proposed to control agents. It differs from other models in its behavioral and
neurobiological bases and in the psychological experiments it explains. This article is
a new contribution to the increasing interest in building biologically plausible models
for application to robot research.

We have investigated the capability of the model of operant behavior developed by
Lew et al. and Zanutto and Lew [20, 35] to learn obstacle avoidance. The hypotheses
of this adaptive neural network model of aversive and appetitive behavior come from
theories of behavior, experimental results on animals, and neurobiological evidence.
Its performance is compared with Q-Learning, the algorithm most used in AI to perform
this task.

2 Operant Conditioning

Psychologists have identi�ed operant conditioning as a primary mechanism that enables
animals to acquire relevant characteristics of their environment in order to get rewards or
to avoid punishments. Operant conditioning is a closed-loop experimental procedure
in the sense that stimuli received by the animal are contingent upon its behavior. The
animal learns to perform the actions that lead to a reward more frequently and the ones
that lead to a punishment less frequently. For example, a rat can be trained to press
a key when it sees a red light as conditioned stimulus (CS) in order to receive a food
reward (unconditioned stimulus, or US).

Our operant conditioning model is able to learn from both appetitive and aversive
stimuli. In the experiment of obstacle avoidance, the animat learns to avoid collision,
which is interpreted as a punishment.

3 Model of Operant Conditioning

Psychological experiments suggest that behavior is driven by changes in the expectation
about the future salient events, mainly reward and punishment. In operant and classical
conditioning, the CS anticipates the US. Rescorla and Wagner [23] proposed that animals
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learn by comparing what they expect from a given situation with what actually happens.
As Staddon [29] has pointed out, animals act because the CS allows them to elaborate an
expectation or prediction of the unconditioned stimulus. Furthermore, there are neural
substrates of prediction and reward, such as the involvement of dopamine neurons of
the ventral tegmental area (VTA) and substantia nigra, identi�ed with the processing of
prediction and reward [25].

From this point of view, Lew et al. and Zanutto and Lew [20, 35] presented a neural
network model (ZL) that, based on biologically plausible hypotheses, explains relevant
features of operant conditioning for appetitive and aversive stimuli. In [20] it was shown
that the model predicts features of appetitive stimulus such as the matching law, re-
sponse selection, the partial reinforcement extinction effect, spontaneous recovery, and
the successive contrast effect. In [35] it was shown how the model explains experiments
to support the one-factor theory, the two-factor theory, and the cognitive theory. Fi-
nally, this model also explains imitation in the same terms as Schmajuk and Zanutto [24].

The model is shown in Figure 1. The inputs to the model are all the CSs and the US.
The outputs are all the possible responses of the animal (Rs). The network has three
functional blocks that simulate the stimuli and responses: the short-term memory, the
prediction neurons, and the response neurons.

Figure 1. Neural network model. There is an arti� cial neuron computing the prediction P, and one for each
response R[ j]. Here P is a nonlinear function applied to the output of the prediction neuron .X/. VC: visual cortex;
AC: auditory cortex; OC: olfatory cortex; GC: gustatory cortex; LS: limbic system; PFC: prefrontal cortex; PMC:
premotor cortex; MC: primary motor cortex; MDS: mesocortical dopaminergic system; VTA: ventral tegmental
area. The traces (TCS[i]) representing the short-term memory of the conditioned stimuli are computed by a group
of cells in the PFC-M [15]; the unconditioned stimulus (TUS), and the responses (TR[ j]) are inputs of the neurons
computing P and R[ j]. The synaptic weights V[CS[i]], V[R[ j]], and V[US] represent the associations between the
inputs and P. The synaptic weights W[R[ j]; TS] are associations between P, TCS[i] and TUS, and the PFC-L [4]. The
responses performed by the animal are inputs to the different sensory cortices (VC, AC). These responses generate
short-term memory in the PFC-M (bottom of the � gure). Finally, the traces from response neurons are feedback to
the prediction neuron.
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In the model, all the neurons make a summation of their inputs weighted by their
synaptic weights, and then a nonlinear function is applied, as is commonly done in
neural network models. In addition, synaptic weights are limited in their maximum
strength due to biological constraints.

A single arti�cial neuron computes the role of dopamine neurons of the VTA and
substantia nigra (SN) in prediction and reward. The prediction neuron has all the
stimuli and the response traces as inputs. The prediction neuron synaptic weights are
modi�ed by the Rescorla-Wagner rule, except the one that corresponds to the US, which
remains �xed. The response neurons have all the CS and US traces and the prediction
as inputs. If the prediction exceeds a certain threshold, the learning in the responses
will be Hebbian in the appetitive, and anti-Hebbian in the aversive case. The reverse
rule is applied if the prediction is below the threshold. When one of the response
neurons exceeds a certain level, the associated response is executed.

The hypothesis that dopamine can mediate learning in motor association and pri-
mary motor areas was also incorporated in the operant learning model of Donahoe et
al. [11–13]. However, this last model does not take into account that dopamine neurons
in the VTA and SN signal the difference between actual and predicted rewards [25]. The
Rescorla-Wagner rule states that the discrepancy, or error, between the actual and pre-
dicted rewards determines whether learning occurs when a stimulus is paired with a
reward. The role of prediction errors is demonstrated by the observation that learning
is blocked when the stimulus is paired with a fully predicted reward. Waelti et al.
[33] used this blocking procedure to show that the responses of dopamine neurons to
conditioned stimuli are governed differentially by the occurrence of reward prediction
errors rather than stimulus-reward associations alone. Daly and Daly [7, 8] incorpo-
rated the major predictions of frustration theory [1] in the Rescorla-Wagner model. In
contrast with the operant theory presented in [20, 35], Daly and Daly’s model does not
explicitly determine which response is emitted given the associative strength at a par-
ticular moment in time. As explained above, the operant model used here has a neuron
computing the prediction, whose learning is a real-time version of the Rescorla-Wagner
rule. As in [11], the simulated dopaminergic system in the VTA and SN controls the
learning of the model’s responses, although it differs in the learning rule applied.

There are two main approaches to making formal theories of behavior based on
neuroscience research. The �rst one consists of explaining behavior from realistic
models of biological neurons and synapses. This approach has not been able to explain
the most basic conditioning paradigms, due to the complexity of the mammals’ nervous
systems. The second one starts explaining behavior by building models at a higher level
of abstraction constrained by anatomical, physiological, and neurobiological evidence.
Although this approach sometimes lacks details at the cellular level, it is good for testing
hypotheses that can be veri�ed by the animal’s behavior. Once the model is able
to explain most relevant behavioral results without contradicting biological evidence,
higher levels of abstraction can be replaced with more concrete ones. The model
used here follows this latter approach, in which arti�cial neurons represent clusters of
biological neurons.

3.1 Traces of Stimulus Computation
There are two types of traces, one corresponding to stimuli, and the other to responses.
In both cases, the traces represent a short-term memory [15]. Short-term memories allow
associating a CS with a US when their presentations are not simultaneous.

The stimuli traces receive all the stimuli coming from the visual cortex (VC), auditory
cortex (AC), olfactory cortex (OC), gustatory cortex (GC), and limbic system (LS) as
inputs. The outputs of short-term traces are inputs to response neurons and to the
prediction, and the traces from response neurons are feedback to the prediction neuron.
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The equation to calculate the short-term traces .TS/ of the stimuli .S/ of the CS as
well as the US at instant n is a �rst-order linear difference equation:

TS.n/ D TS.n ¡ 1/ ¢ .1 ¡ "/ C " ¢ S.n/ if S.n/ > 0 (1)

TS.n/ D TS.n ¡ 1/ ¢ .1 ¡ ¯/ if S .n/ D 0 (2)

When a stimulus is presented .Sn¡1 > 0/, its short-term trace raises exponentially at a
rate determined by ", up to a maximum equal to the stimulus value. When the stimulus
disappears .Sn¡1 D 0/, its short-term trace decays exponentially at a rate determined
by ¯ .

There is a similar equation for the response traces:

TR.n/ D TR.n ¡ 1/ ¢ .1 ¡ ¯/ C " ¢ .1 ¡ TR.n ¡ 1// ¢ R.n/ (3)

3.2 Prediction Computation
The inputs to the prediction are all the short-time traces of the CSs, USs, and Rs. Each
response neuron has the output of the prediction neuron .P/ as input. The prediction
neuron has the additional function of controlling the response neurons’ learning:

X .n/ D VUS.n/ ¢ TUS.n/ C
NCSX

iD1

VCSi.n/ ¢ TCSi.n/ C
NRX

iD1

VRi.n/ ¢ TRi.n/ (4)

P .n/ D
»

1 C e¡À¢.X .n/¡¾/
(5)

Here P is the nonlinear output function, V the synaptic weights, and T the correspond-
ing traces of the US, CS, and R. The number of CSs is NCS, and the number of responses
is NR. The synaptic weight VUS.n/ remains �xed at 0.2. The maximum value of P is » ;
when Xn D ¾ , P reaches half of its maximum value. The slope of P is controlled by À.

The updating of the weight in the prediction neuron is based on the Rescorla-Wagner
model [23]:

VXS .n/ D VXS.n ¡ 1/ C ´.US/ ¢ TS.n/ ¢ .US.n/ ¡ X .n// (6)

VS.n/ D 2

1 C e¡·¢VXs .n/
¡ 1 (7)

The associative strength is represented by VXS.n/. Equation 7 clamps the synaptic
weights in the range from ¡1 to 1. The VX values are bounded between 10 and ¡10
in order to limit the maximum associative strength. Here the salience (i.e., the relative
importance of a stimulus) is represented by the stimulus trace TS.n/; this means that a
CS’s salience depends on its memory trace. The rate of learning is represented by ´(US),
which depends on whether the US is present or not, due to attentional modulation:
´.US/ D ´i if US > 0, and ´.US/ D ´d if US D 0.

3.3 Computation of Responses
There is an output neuron for each of the possible responses of the animal. The output
of these neurons is determined by

Yj.n/ D WjPred.n/ ¢ P.n/ C WjUS.n/ ¢ TUS.n/ C
NCSX

iD1

WjCSi.n/ ¢ TCSi.n/ C noise.n/ (8)
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Rj.n/ D

8
><

>:

0 if Yj .n/ < 0

Yj .n/ if 0 · Yj .n/ · ¹

1 if Yj .n/ > ¹

where WjPred.n/ is the j th response synaptic weight corresponding to the output of
the prediction neuron at instant n, WjUS.n/ is the one corresponding to the US, and
WjCSi.n/ is the one corresponding to each of the CSs. The output of the prediction
neuron is Pn, the US’s short-term memory is TUS.n/, and the CS’s short-term memories
are TCSi.n/.

The animal executes a response R. j / whenever Y. j/ exceeds the threshold ¹. At
any instant, only one response can be executed. The updating is done asynchronously.
At each instant, one neuron is selected at random, and only its weights are updated.

The equation to compute the learning of these neurons is based on the Hebb rule
[16], which states that the change in synaptic ef�cacy is proportional to the presynaptic
and postsynaptic activity. If the US is predicted, the learning will be Hebbian in the
appetitive case. The association between stimuli and the selected response will be
reinforced because it produces a positive reinforcement. The weights of the executed
neuron are updated in the following way:

Wj q .n/ D 9 ¢ Wj q.n ¡ 1/ C Á ¢ Ä ¢ Q.n/ ¢ TR j.n/ (9)

where Q is the corresponding input (P , TUS, or TCSi), q is the respective index (P , US,
or i), and TRj .n ¡ 1/ is the short-term trace of the input j th response at instant n ¡ 1.
The coef�cient 9 is a constant that represents the synaptic weight forgetting rate. The
learning rate is controlled by Á and Ä. However, Ä can take two possible values: when
the US is appetitive and P < ¸, then Ä D ¡¸, and if P ¸ ¸ then Ä D ¸. The reverse rule
is applied in the case that the US is aversive. The constant ¸ is the learning threshold;
if the prediction is high enough, it means that the active CSs will signal that a US is
likely to come; if the US is aversive, the responses that do not avoid the punishment
will be weakened.

4 Obstacle Avoidance with the Model of Operant Behavior

4.1 Introduction
We developed an application to simulate an environment with a number of obstacles
in which a mobile robot with proximity sensors must avoid them. The inputs to the
agent are �ve digital sensors and a signal indicating if the mobile robot has collided or
not. The outputs are three possible actions: to move forward, to turn right 45±, and to
turn left 45±. The control of the mobile vehicle can be a computational implementation
of our model of operant behavior (ZL’s model) or a Q-Learning one. We tested both
models in the same environment and compared their ability to learn how to avoid
obstacles.

4.2 Description of the Simulator’s Computational Implementation
The virtual environment is a 200 cm square with eight obstacles and a labyrinth. The
simulated mobile robot is a 10 cm square. There are three equidistant IR sensors in
front of the mobile vehicle and two sensors on each side (see Figure 2). The simulated
IR sensors measure the amount of IR light re�ected back from the obstacles inside a
bidimensional vision cone. Whenever the received energy is above a certain threshold,
the sensor returns a logic level of 1, and otherwise 0. In order to compute the energy
received by each sensor, the intersections between the obstacles and the limits of the
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Figure 2. The mobile vehicle sensors’ distribution and their cone of vision. There are � ve IR sensors in the front of
the mobile: three facing forward, and the other two facing to the left and the right. The � gure is out of scale.

Figure 3. The three allowed mobile vehicle moves, each one involving a displacement of the mass center.

vision cone are calculated. Then, each segment is integrated with respect to the inverse
square of the distance. The reach of the sensors is 10 cm.

The agent executes one of the allowed actions, to move forward, to turn left, or to
turn right. Both turns involve a displacement of the mobile robot’s center of mass (see
Figure 3). Once the action is decided upon and performed, the sensor’s information
does not change, and the agent cannot make another response until the movement is
completed. Then the agent must perform another action.

One of the purposes of this article is to show how the model of operant conditioning
is able to avoid obstacles, given digital IR sensors as input. However, learning complex
rules, as in this case, involves other capacities beyond operant ones. An operant
behavior theory need only explain the experimental results of operant learning. In this
case, it seems unlikely that an animal in an operant box having the sensor information
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as CSs could learn what to do to avoid a punishment. That the operant model used
here was not able to avoid obstacles with the raw sensor information is right for the
theory, but does not accomplish the proposed task. However, this does not mean that
operant behavior is not involved in the learning of obstacle avoidance, but that higher-
level visual processing has to be used to simulate when animals are in the context
of avoiding obstacles. We do not focus on studying how the visual information that
arrives at association areas (i.e., the prefrontal cortex and premotor cortex) is processed.
Instead, we are interested in how an action is selected based on higher-level information
that arrives at association areas and the reinforcement that is obtained.

To address this inconvenience, we had to add a preprocessing layer between the
sensor information and the input to the agent. No direct information from the sensors
is provided to the agents. Instead, we provided the agent with three different signals
as CSs (see Figure 4) that indicate in which direction there is a free path, and another
CS representing the context (CX) that is present all the time. Three circumstances can
arise. The �rst one is when there is only one direction without near obstacles. The
second one is when close obstacles surround the agent and there is no clear free path.
In this case, the only active signal will be CX. The third one is when there is more
than one direction without near obstacles. In this last case, one of the alternatives is
selected by default. The selection of a default direction did not have any in�uence on
the performance of any agent.

Figure 4. Free-path CSs for all the possible combinationof sensor states. Empty squares represent sensors detecting
an obstacle. The arrows in each column represent the free-path direction provided to the agents for the sensor
states described below them. The cross represents the cases in which there is no free path (no signal is provided to
the agents). The columns headed by more than one arrow correspond to the cases that have more than one free
path. In these cases only one of the possible directions is provided to the agents. Gray arrows indicate the direction
signal selected by default. In the case that no sensor is detecting any obstacle, no signal is provided. These arbitrary
selections did not in�uence the agents’ performance. Performing a move in the direction of the free path does not
guarantee avoiding a collision. A collision can happen if, despite taking the correct action to avoid an obstacle, the
mobile robot is too close to it. In addition, performing a move in a direction different from the free-path signal may
not lead to a collision.
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Figure 5. The virtual environment is a 200 cm square with eight obstacles and a labyrinth. The simulated mobile
robot is a 10 cm square. The reach of the sensors is 10 cm. Some dif� culties in learning the task arise because the
only reinforcement signal is when the agent collides. In this case, if the agent goes ahead instead of turning left when
it has a free path to the left, it makes up to twelve moves in the start of the trial (the starting direction of movement
is north). This makes the learning more dif� cult, as there is only one punishment in twelve moves. In this way, the
mistaken action lasts longer under Hebbian learning than under anti-Hebbian learning. This local minimum is avoided
by having enough exploratory behavior.

Some dif�culties in learning the task arise because the only reinforcement signal is
when the agent collides. For example, when the agent receives a CS indicating that
there is a free path to the left, the agent can be misled to go ahead. It receives only
one punishment in twelve moves, so the mistaken action lasts longer under Hebbian
learning than under anti-Hebbian learning (see Figure 5). This local minimum can be
avoided by having enough exploratory1 behavior.

Reinforcement learning algorithms, such as Q-Learning, rely on the assumption that
the underlying task corresponds to a Markov decision process (MDP). However, this
hypothesis does not hold true when the state of the environment is not completely
known to the learning agent [26]. A partially observable Markov decision process
(POMDP) is a generalization of a MDP that restricts the state information available to
the learner [17]. As in the present article, in a POMDP the control agent has sensors
that return some estimate of the state of the environment. These algorithms, applied
in non-MDP situations, can sometimes work well, as in [3], but can go very wrong,
as demonstrated in [26]. Singh et al. [26] demonstrated that in a POMDP the best
stochastic policy can be arbitrarily better than the best stationary deterministic policy.
They also showed that reinforcement learning algorithms do not degrade gracefully
with increasing non-Markovianness in a POMDP. Different approaches to deal with
POMDPs can be found in [17, 19, 26].

In this way, lack of information in position sensors and in the reinforcement feedback
makes it impossible for some of the conditions for convergence of Q-Learning to be
ful�lled. Thus, we expected that Q-Learning would not be 100% effective in avoiding
obstacles.

1 Here, exploratory behavior refers to the random selection of the model’s responses.
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4.3 Agent’s Parameters
In each trial the agent controls the mobile vehicle during 400 steps or until it collides,
starting from the same position. The experiment consists of 150 trials. Fifty repetitions
of the experiment are performed in order to obtain a mean number of steps performed
in each trial. Each repetition starts with a naÖve agent.

The simulated environment provides the agents with the states of their sensors, and
then agents report the action taken to the environment. The agents receive a signal
indicating if they have collided or not. Finally, all this cycle is repeated. Q-Learning can
work straightforwardly with this structure; however, the operant model differs in how
it processes the information. The operant model works in real time, while Q-Learning
does not. Q-Learning takes an action once the state is known, and its updating rule is
applied once the punishment is received. In contrast, the operant model can take an
action at any moment, and it updates the synaptic weights in real time. The presentation
of a CS, the response performed, and the reinforcement received occur at precise
instants. However, the internal processing of the time by the model does not in�uence
the environment. The model receives the sensor information. When a response neuron
is selected, the action is performed, and if the agent collides, it receives a punishment
that is processed internally. Once an action is selected, it cannot be changed during
the turn, and the sensor information is not updated until the move is completed.

We de�ne a time step as an updating of the model equations. The operant model
computes the whole cycle of sensor information, action taken, and reinforcement ob-
tained in 60 time steps. Sensor information is presented during the �rst 25 time steps,
the response has a duration of 5 time steps, and the reinforcement is presented for 10
time steps (see Table 2).

We tried different proportions of forced exploration in Q-Learning ("-greedy explo-
ration); however, the best performance is achieved without forcing any exploration. In
the case of the operant model, exploration is performed in the following way:

1. If in the �rst 15 time steps no action is executed, the noise level is raised from 0 to
5.

2. Between trials 0 and 30, the probability of executing a response at random is 0.4;
thereafter it is 0.

Tables 1–4 show the parameters of the experiments of both the operant model and
the Q-Learning model.

Table 1. Mobile vehicle parameters.

Length 10 cm
Width 10 cm
Sensor threshold 0.1
Turning radius 5 cm
Opening angle 60±

Table 2. In the model of operant behavior, in time steps, for each move, the durations of the CS and US, and the
response time.

Move 60
CS 25
US 10
Response 5
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Table 3. Operant behavior model parameters.

¯ 0.005 Short-term memory decay rate
" 0.25 Short-term memory rise rate
» 1.2 Prediction neuron maximum value
À 10 Prediction neuron nonlinear output parameter
¾ 0.4 Prediction neuron nonlinear output parameter
¹ 0.35 Response neuron threshold
· 0.2 Slope parameter of the clamping equation of the response

neuron’s synaptic weights
´i 0.4 Rise rate of P neuron synaptic weights
´d 1.5 Decay rate of P neuron synaptic weights
9 0.99977 Decay rate of response neuron synaptic weights
Ä 0.6 Hebbian learning threshold
¸pos 0.16 Hebbian learning constant value when the output of the

prediction neuron is below the threshold
¸neg 2 Hebbian learning constant value when the output of the

prediction neuron is above the threshold
V [US] 0.2 Fixed weight of the prediction neuron synaptic weight cor-

responding to the US input
US intensity 6
CS intensity 1
CX intensity 0.15

Table 4. Q-Learning parameters. n.i; a/ is the number of times that the agent executed the action a in the state i.

Punishment 1

´n.in; an/ 1:6
n.i;a/

4.4 Results
We compared the performance of Q-Learning and of our operant model agent in dif-
ferent environments, with similar results. Here, we show only one of the simulated
environments. In the case of Q-Learning, we studied two possibilities: in the �rst one
the inputs were the state of the �ve sensors (32 states), and in the other one the inputs
were the three free-path preprocessed signals (4 states, because only one signal can be
activated at any instant).

Figures 6–8 show a complete experiment without collision for each agent (32-state
Q-Learning, 4-state Q-Learning, and operant behavior model agent, respectively).
Figure 9 shows the average number of steps performed by the agents per trial. It
can be seen that the 32-state Q-Learning agent has poor performance, and the one
with highest performance is the model of operant behavior, although it learns more
slowly than the 4-state Q-Learning agent (each point in the �gure is an average of �ve
consecutive trials). Figure 10 compares the average performance achieved in the last
30 trials for each type of agent (when it is considered that agents achieve stationary
performance). Figures 9 and 10 show that the operant model had better performance
than Q-Learning (P < 0:001, chi-square test).
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Figure 6. One example of a route without collisions performed by the 32-state Q-Learning agent.

Figure 7. One example of a route without collisions performed by the four-state Q-Learning agent.
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Figure 8. One example of a route without collisions performed by the operant behavior agent.

Figure 9. The experiment consisting of 150 trials is run from the same initial conditions 50 times. The � gure shows
the proportion of experiments that are �nished without collisions as a function of the trial number for each type of
agent (each mark represents the average of � ve trials). There is at least one policy that guarantees that there is no
collision.
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Figure 10. Proportion of experiments that are � nished without collisions as a function of the trial number for
each type of agent. The proportions are estimated by repeating the whole experiment 50 times. Proportions of
completed experiments are estimated after the agents have learned (last 30 trials).

5 Discussion

The aim of this article has been to show that an operant learning model could learn to
avoid obstacles. Two types of controller and two types of input were tested. The results
showed that both factors in�uenced the performance. Although the preprocessing layer
simpli�es the problem to the agents, neither of them achieved a perfect performance.
In this case, the only optimal policy is to move in the direction of the free path and
to take an arbitrary action when there is no free path. In this way, when 4-state Q-
Learning and the operant model learn the optimal policy, the two behave similarly.
The only difference between them is that they can maintain different proportions of
random choices for each state. On the other hand, there are other optimal policies
if agents are provided with direct sensor information. For example, when there was
more than one free path, one of them was chosen by default, although the selection of
the other alternatives did not change the performance. Thus, the agent can learn other
possible mappings with the same results. However, both the operant model without
the preprocessing layer (data not shown) and the 32-state Q-Learning achieved poor
performance.

Figure 9 and Figure 10 show that the operant model has better performance than Q-
Learning. One of the reasons is that each agent was built to solve different problems.
Q-Learning executes a Markov decision process, while our operant model simulates
how animals learn to respond in the presence of different stimuli in order to receive
appetitive stimuli or to avoid aversive ones.

When the hypotheses of the convergence of Q-Learning are not ful�lled, its perfor-
mance cannot be predicted, thus raising a question about its robustness in such cases.
However, robustness is one of the most desirable features of an algorithm in order to
be able to solve many different problems with the same strategy. Probably the best
example of this property is observed in animals. Previous works proposed models of
operant conditioning that can learn to avoid obstacles [2, 14, 32]; however, the model
used here is based on biologically plausible hypotheses that allowed us to explain the
most relevant behavioral results in our previous work [20, 24, 35].
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The model presented here cannot solve some tasks that Q-Learning can. For exam-
ple, this model cannot be applied to operant paradigms that have nonlinear solutions,
as this task cannot be performed without a preprocessing layer. Modi�cations to the
model could allow solving problems that are more complex than the one presented
here, or the same problem with better performance. This work has the purpose of
showing that neural network principles applied to the description of animal behavior
in different learning tasks might also be applied to build highly adaptive autonomous
agents [24].

Operant conditioning is similar to reinforcement learning in that it allows an agent
to adapt its behavior to get rewards from the environment when it performs a cor-
rect action. Also, state-action associations can be translated into psychological terms
as stimulus-response associations. Stimulus-response-only architectures establish cor-
relations between the response taken and the reward received. Stimulus-response
associations are able to distinguish between clearly de�ned high and low rewards, but
not when a low reward in one situation can be the highest reward attainable in an-
other situation. Q-Learning relies on the prediction of future rewards as a function of
the input stimuli and the selected response. Dyna architectures incorporate internal
models. The neural network presented here can be understood as a Dyna architecture,
which combines response-selection mechanisms with an internal model of the world.
The model of the environment generates predictions of future events based on the
combination of environmental stimuli and the agent’s own response. Based on these
predictions, the model selects the best response in a given situation.

The architecture of the neural network of the operant model we have presented
relies on a neuron that predicts the reinforcement; the main objective is to control the
learning of the response neurons in order to make the moves that avoid the punishment
due to collisions. The neural network makes a simple model from the inputs, actions,
and punishment that it receives. Modi�cation of the response neurons’ synaptic weights
occurs not only because of the arrival of the punishment but by the prediction of its
arrival. The ability to anticipate relevant events has an important adaptive property in
nature. However, reinforcement learning architectures do not learn an internal model
of the world’s dynamic (what causes what), just the policy (what to do) and the return
predictions (how well I am doing). Sutton [27] pointed out that this is an important
limitation because potentially much more can be learned from an environment model
than just by trial and error. Also, the punishment is just a scalar, while the sensory input
signal has much potential information as a source of training.

Despite its simplicity, the present work shows that this neural network is suitable to
control autonomous robots. With simple hypotheses borrowed from psychological and
neurobiological experiments, the proposed operant model is a clear example of how
research in control of autonomous robots can bene�t from research in psychology and
neuroscience.

6 Conclusion

We have shown how a model of operant behavior learns to avoid obstacles by being
punished for collisions and that its �nal performance is better than that of Q-Learning.
Also, it is shown that a model that has been built with the aim of explaining real
behavioral experiments in animals can perform tasks in an environment different from
that in which animal experiments are made.
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