
Neal Lesh and Oren Etzioni*
Department of Computer Science and Engineering

University of Washington, Seattle, WA 98195
neal@cs. washington.edu, etzioni@cs. washington.edu

(206) 616-1849 FAX: (206) 543-2969

Abstract

The bulk of previous work on goal and plan
recognition may be crudely stereotyped in one
of two ways. "Neat" theories -rigorous, jus-
tified, but not yet practical. "Scruffy" systems
-heuristic, domain specific, but practical. In
contrast, we describe a goal recognition mod-
ule that is provably sound and polynomial-time
and that performs well in a real domain. Our
goal recognizer observes actions executed by a
human, and repeatedly prunes inconsistent ac-
tions and goals from a graph representation of
the domain. We report on experiments on hu-
man subjects in the Unix domain that demon-
strate our algorithm to be fast in practice. The
average time to process an observed action with
an initial set of 249 goal schemas and 22 action
schemas was 1.4 cpu seconds on a SPARC-10.

1 Introduction and motivation

Plan recognition {e.g. [Kautz, 1987; Pollack, 1990]) is
the task of identifying an actor's plan and goal given a
partial view of that actor's behavior. We have focused
on identifying the actor's goal. There are several poten-
tial applications for an effective goal recognizer. Goal
recognition is useful for enhancing intelligent user in-
terfaces [Goodman and Litman, 1992]. Furthermore, a
goal recognizer would allow an autonomous agent to pro-
vide useful services to the people it interacts with, such
as completing their current tasks and offering advice on
how to better achieve future goals. This paper describes
a goal recognition module. We do not consider how to
integrate a goal recognizer into an agent's architecture.

In our scheme, the system observes the aetor executing
a sequence of actions. The actor does not necessarily
know she is being observed {this is keyhole recognition).
The system attempts to identify the actor's goal as early

"Many thanks to Denise Draper, Terrance Goan, Robert
Goldman, Steve Hanks, Henry Kautz, Nick Kushmerick, Di-
ane Litman, Mike Perkowitz, Rich Segal, Tony Weida, and
Dan Weld for comments and discussion. Special thanks to
Keith Golden and Mike Williamson for their ongoing sup-
ply of critique and coffee. This research was funded in part
by Office of Naval Research grant 92-J-1946 and by National
Science Foundation grant IRI-9357772.

as possible. What does it mean to identify the actor's
goal? To attribute a goal to an actor is to predict that
the actor's actions, both observed and unobserved, will
be the execution of one of the plans for that goal. The
actor's goal may be a conjunction of various goals such
as "Taking out the trash and fixing the car" .

The following scenario illustrates the sort of conclu-
sions we want our goal recognizer to produce. The ob-
served actor is a computer user, entering commands into
a Unix shell. Suppose we observe:

>cd /papers
There are many plausible goals at this point. The actor
might be searching for a particular file. Or perhaps she
wants to know how much memory is used by the /papers
directory. But her goal is not to find a free printer. Nor
is she reading her mail. Why bother to change directo-
ries for these goals? Changing directories is irrelevant to
these goals and we assume the actor does not execute
irrelevant commands. If we allowed arbitrarily many ir-
relevant actions then we could not predict the actor's
goal because all the observed actions might be unrelated
to her goal. Suppose that we next observe:

>Is
paper.tex paper.ps

The second line is the output from Is. The goals we
previously rejected are still rejected. Let's reconsider
the goal of determining the memory usage of /papers.
The optimal approach is to execute du instead of Is. If
actors acted optimally, we could reject this goal. But
actors do not always act optimally. This actor may next
execute Is -Ion paper. tex and on paper. ps and add
the memory usages of the files together. Thus, Is may
be part of a suboptimal plan to determine the memory
usage of /papers. Now we observe:

>grep motivating paper.tex
We now reject the memory usage goal. We also reject
the goal of searching for a file named paper. tex because
the grep command does not contribute to it. The actor
might, however, be looking for a file that contains "mo-
tivating" or perhaps for a file that contains "motivating"
and is named paper. tex.

In the following sections we articulate the definitions,
assumptions, and algorithm we use to express, justify,
and produce these conclusions. Although we validate
our system in Unix, our algorithm and formal results
are domain independent.

2 Overview of the paper

Our objective is to build a goal recognizer that performs
well in large, real domains. We need a way to quickly
determine if a goal is inconsistent with the observed ac-
tions. Informally, a goal is inconsistent with the observed
actions if the actor could not possibly have executed the
actions as part of a plan to satisfy the goal. To determine
consistency, we must reason about all plans for each can-
didate goal. To reason tractably, we borrow techniques
for constructing and manipulating graph representations
of planning problems, originally developed to produce
search control for generative planners [Etzioni, 1991;
Smith and Peot, 1993]. By analyzing interactions among
the actions, action schemas, and goal schemas in our con-
sistency graphs (defined below), we detect cases where
no valid plan exists for a goal.

Most plan recognition algorithms run in exponential
time and have not been shown to perform well on large
problems. In contrast:

.Our algorithm is sound (never rejects a goal G un-
less our assumptions entail that G is not the ac-
tor's goal) and runs in polynomial time in the size
of the input goal recognition problem. This input is
smaller than the corresponding input to most plan

recognizers.

.Our implementation is fast. We have tested our sys-
tem on data collected from human subjects in the
Unix domain. The average time to proces~ an ob-
served action with an initial set of 249 goal schemas
and 22 action schemas was 1.4 cpu seconds.l

In our formulation, goal recognition is semi-decidable.
It follows that our polynomial-time algorithm is incom-
plete, i.e. it is not guaranteed to reject every inconsistent
goal. In our experiments, however, the algorithm rejects
most inconsistent goals.

This paper is organized as follows. Section 3 defines
our terms, the input and output of a goal recognizer, and
states our assumptions. Section 4 introduces consistency
graphs, describes our algorithm, and works through an
illustrative example. Section 5 describes our empirical
validation. Finally, sections 6 and 7 discuss related work,
the limitations of our system, and future work.

3 Problem formulation

We begin with the informal story. The actor constructs
and then executes a plan to solve her current goal. Al-
though plans may contain conditionals, the observable
behavior that results from the execution of any plan is a
sequence of actions. The system observes a prefix of this
action sequence. A plan is consistent with the observed
actions A iff that plan has an execution with prefix A. A
goal is consistent with A iff there exists a consistent plan
for that goal. A key question is what constitutes a plan
for a goal? We assume the actor constructs plans with-
out any irrelevant actions. Wefurther assume the actor
constructs plan p for goal G only if p might achieve G

given the actor's beliefs about the world. This assump-
tion suggests the system has access to the actor's beliefs.
The system is given, as input, an arbitrary subset of the
actor's beliefs. The more of the actor's beliefs the system
is given, the more goals it can prove inconsistent.

3.1 Planning language

Our formulation is general enough to accommodate
many planning languages. We use UWL [Etzioni et al. ,
1992], an extension of the STRIPS language, because it
can express information-gathering goals and actions with
sensory effects. This is necessary to distinguish between
Unix commands such as pwd and cd. In UWL, states
are sets of literals. A literal is a possibly negated atomic
formula. The conjunction of literals in a state describes
all relevant relationships in that world state. Models
and goals are also sets of literals. The conjunction of
the literals in a model or goal is a partial description
of a state. A goal schema is a set of literals which can
contain variables. A schema can be instantiated by re-
placing variables with constants. For example, the goal
schema for searching for a file with some name ?n (where
?n is a variable) can be instantiated to form the goal of
searching for a file named paper. tex. An action schema
consists of a name, a precondition set, and an effects set.
An action is an instance of an action schema, with a
unique id number. The CD action schema, for example,
can be instantiated into many different actions, such as
cd /papers or cd bin. Multiple executions of the same
action are distinguished by their id numbers.

Informally, plans are programs composed of nested
conditionals and actions. For brevity, we will not de-
fine plans but instead make use of a function, Executor,
which acts as an interpreter for plans. Executor is a
many-to-one mapping that maps a plan and state to the
action sequence that results from executing the plan in
the state. We often refer to an action being in a plan, or
one action coming before another. Action Ai is in plan
p iff there exists a state S such that Executor(p ,S) -+
[.., Ai, ..]. If Ai and Aj are both actions in plan P, then
Ai is before Aj iff in every execution of p in which Aj
appears, Ai appears prior to Aj .

3.2 Consistency

A plan is consistent with the observed actions if some
execution of the plan might produce those observations.

Definition 1 Plan P is consistent with sequence of ac-
tions A iff there exists state S such that Executor maps
P and S to a sequence of actions of which A is a prefix.

Consistency of a goal is defined relative to a set of
action schema A and a model M. A goal is consistent
with the observed actions only if there exists a consistent
plan, built out of A, for that goal. A plan for a goal must
potentially-achieve the goal, given model M, and contain
no irrelevant actions. We now define these terms.

Definition 2 Plan P potentially-achieves goal G given
model M iff there exists a state S such that M ~ S and
G is satisfied by executing p in S .

If p potentially-achieves G given M then p also
potentially-achieves G given any subset of M. This

IThe data we have collected is publicly available. Send
mail to neal@cs.washington.edu for details.

3.3 1/0 of a goal recognizer

A goa/ recognition prob/em n is a four-tuple (A, M, A, g)
where A is an action sequence (the observations), M is
a model (a subset of the actor's beliefs), A is a set of
action schemas (the actor's plan is composed of actions
in this set), and 9 is a set of goal schemas. A goa/ rec-
ognizer takes a goal recognition problem and returns g'
.<;;;: g. Ideally, g' is the set of goal schemas in 9 that are
consistent with A, given M and A. Figure 1 summarizes
the input/output specification for a goal recognizer.

We view goal recognition as the process of discarding
goal schemas from the input set 9 and returning the re-
maining, unrejected goals. A sound recognizer never dis-
cards a consistent goal. A comp/ete recognizer discards
every inconsistent goal.

When the recognizer returns g' , this means "the ac-
tor's goal is an instance of a schema in g' ." If the recog-
nizer is sound, this conclusion is justified by the following
assumption.
Assumption 1 The actor's goal is consistent, given
mode/ M and action schemas A, with the {fu//} action
sequence the actor executes, of which A is a prefix. Fur-
ther, the actor's goa/ is an instance of a schema in 9 .

Determining consistency is exponential in the length of
the longest plan (that doesn't go through the same state
twice). In an unbounded domain, consistency is semi-
decidable. In the next section, we describe a sound,
polynomial-time, but incomplete goal recognizer.

.A goal recognizer takes a goal recognition problem
n as input and returns a set of goal schemas g' .

.The input n = (A, M, A, g) where

-A is a sequence of actions. A is assumed to be
a prefix of the actions executed by the actor .

-M is a set of beliefs. M is assumed to be a
subset of the actor's beliefs.

-A is a set of action schemas. A is assumed to
be a superset of the action schemas the actor
plans with.

-9 is a set of goal schemas. The actor's goal is
assumed to be an instance of an element in 9 .

.The output g' is a subset of 9 such that for every
goal schema in g' there exists an instance of that
goal schema Gi and a plan p such that:

-p could achieve goal Gi given the actor's
beliefs (constrained by M).

-p contains no irrelevant actions.
-p is composed of actions from A.
-Some execution of p is a sequence of

actions with prefix A.

.Multiple Goals: The actor's goal may be the con-
junction of various goals, such as "Taking out the
trash and fixing the car and writing a paper"

Figure 1: Input/output specification for a goal recognizer.

makes it easy to treat the beliefs M in the input n as a
subset of the actor's beliefs.

What does it mean for a plan to contain no irrelevant
actions? We require that every action in the plan support
some action in the plan or the goal.2 We define support
between actions as follows (the definition of an action
supporting a goal is very similar) .

Definition 3 Let Ai and Aj be actions in plan P. Ai
supports Aj iff Ai is before Aj, Ai has an effect that uni-
lies with a precondition p of Aj, and no action between
Ai and Aj in p has an effect which negates p.

Support is blocked only by an action that negates the
supporting effect. One upshot is that we allow redundant
sensory actions in the actor's plans. In other words,
we do not assume that the actor remembers everything
she learns from executing sensory actions. We can now
define consistency for goals.

Definition 4 Goal G is consistent with action sequence
A, given model M and action schemas A, iff there ex-
ists plan p such that (1) p is consistent with A, (2)
every action in p is an instance of a schema in A, (3)
p potentially-achieves G given model M, and (4) every
action in p supports an action in p or supports G .

A goal schema is consistent if any instance of that goal
schema is consistent.

4 Our goal recognizer

We now present our goal recognizer, i.e an algorithm
which takes a goal recognition problem II and returns
a set of goal schemas. This goal recognizer is provably
sound and runs in polynomial time. In this section, we
present our theorems and provide intuitions for why they
are true. The full proofs are in [Lesh and Etzioni, 1995].
In section 5, we validate our algorithm using data gath-
ered in the Unix domain.

Our goal recognizer constructs and manipulates a sin-
gle consistency graph r based on the input II. A con-
sistency graph is a directed graph in which the nodes
are actions, action schemas, and goal schemas. Figure 2
shows a simple consistency graph.

Informally, the consistency graph represents the plans
the actor might be executing. The actions in r represent
the observed part of the actor's plan. The action schemas
in r represent possible unobserved actions. The goal
schemas in r represent the goals the actor might have.
The edges in r indicate when one action can support
another action or goal. A consistency graph is correct if
all consistent plans are represented by the graph.

Definition 5 A consistency graph (V, t:) is correct,
relative to the input goal recognition problem II -

(A, M, A, g), iff the following three properties hold:
(PI) V contains every consistent goal schema in 9 ,
(P2) V contains action schema A E A if an instance of
A is in any consistent plan for a goal in g, and
(P3) t: contains the edge (Vi-+Vj) for every Vi,Vj E V
where Vi (or an instance of Vi) supports Vj (or an in-
stance of Vj) in some consistent plan for a goal in 9 .

2This is a much weaker requirement than that the plan be
minimal in order to contain no irrelevant actions.

Find a file
named papetlex

"""f""""

Find a free

printer
!. ...

\

LPQ

~

Figure 2: Consistency graph for a small, illustrative example:
the goals are in unshaded boxes, action schemas in ovals,
and observed actions in shaded boxes. The dotted edges and
nodes represent elements that have been removed.

shown in Figure 2, such as (LPQ-GREP} and
(GREP-LPQ}. These edges were removed by the
Matching Rule.3

We will now present several, but not all, of our rules.
The Order Rule removes an edge from Ai to Aj if Ai
does not precede Aj .The legality of this rule follows
from the fact that action Ai can support action Aj only
if Ai comes before Aj .

Theorem 2 (Order)
IF (V;,~EA)I\-'(A=[..,Vi,..,~,..])
THEN £' = £ -(Vi- Vj } is /ega/.

If we observed cd /papers and then Is, the Order Rule
would remove the edge from Is to cd /papers since Is
cannot support any previous action. The Order Rule
only removes edges between actions, not action schemas.
The edge (ls-CD} , for example, is not removed because
Is may support some future, unobserved instance of the
CD action schema.

The Prefix Rule removes edges from action schemas
to actions. Recall that action schemas in A represent
the unobserved actions, and actions in A represent the
observed actions. No unobserved action can support an
observed one, because the observed actions precede all
the unobserved actions.

Theorem 3 (Prefix)
IF (Vi E A) A(~ E A) THEN £' = £ -(Vj-Vi} is /ega/.

Without the Prefix Rule, the observations are treated as
an ordered subset, rather than a prefix, of the actor's
behavior .

To motivate the next rule, suppose that action Al has
effects p and q and action A2 has effect -'P. By Defini-
tion 3, effect p in Al cannot support any action after A2.
We can thus remove edges from Al that rely on effect p.

Theorem 4 (C/obber)
IF A = [..Vi,..,~,..,Vk..] and ~ has an effect which

negates the effect in Vi that supports the precondition of
Vk THEN £' = £ -(Vi-Vk} is Iega/.

Due to space limitations, we present only two goal
removal and one action schema removal rules. The Goal
Connection Rule discards a goal if there is not a path
in r from every observed action to that goal. Recall
that edges indicate support. If some action A is not
connected to a goal G, then A cannot support, directly
or indirectly, goal G. By definition, A cannot be in any
plan for G, and thus G is inconsistent.

Theorem 5 (Goa/ Connection)
IF (G E g) I\ (3AiEA s.t. -,Connected(Ai,G))
THEN V' = V -G is Iega/.

The Goal Connection Rule removes "Find a file named
paper. tex" and "Find a free printer" , in Figure 2, be-
cause grep is not connected to them. Also, we automat-
ically remove edges'that point to removed nodes.

The Impossible Conjunct Rule leverages our assump-
tion that the actor's plan possibly-achieves the actor's
goal given the actor's beliefs about the world. On the

3The Matching Rule is legal even if Vj is a goal, because
we define the preconditions of a goal G (which is a set of
literals) to be the members of G.

A fully connected graph with a node for every observed
action, action schema, and goal schema in II is trivially
correct. The initialize function produces such a graph.

function 1 initialize(1I = {A, M, A, g}) : : : returns a
fully connected graph with nodes A U A U 9 .

Our goal recognizer maintains a single consistency
graph. It uses initialize to construct a correct, but large,
consistency graph. The algorithm then removes elements
from this graph without violating correctness. Remov-
ing an action schema from the graph indicates that no
unobserved action is an instance of the action schema.
For example, removing the LPQ action schema indicates
that none of the unobserved (future) actions will be an
lpq command. Removing a, goal schema from the graph
indicates the goal schema is inconsistent, i.e. that no
instance of that schema can possibly be the actor's goal.

Ideally, we would remove elements until we produced a
minimal consistency graph. This graph would be maxi-
mally predictive. In general, however, the minimal graph
is intractable to compute. Instead, we prune elements
from the graph based on linear-time computations. For
example, we will show that; if there is no path from an
observed action to a goal, then that goal must be in-
consistent. Thus, we can safely and quickly remove the
goals "Find a file named paper. tex" and "Find a free
printer" in the graph in Figure 2 because these goals are
not connected to the grep command. These linear-time
computations detect some, but not all, opportunities to
remove elements without violating correctness.

Rules remove elements from the graph that are not
in any consistent plan. A rule returns {V' ~ V, £' ~ £}
given {V, £} .A rule is legal iff it preserves correctness;
i.e. it returns a correct graph when given a correct graph.

For example, suppose that no effect of action schema
Aj unifies with any precondition of action schema Aj. By
Definition 3, no instance of Ai can support any instance
of Aj. Thus, removing edge {Ai-1-Aj} from a correct
graph r does not violate property (P3). Furthermore,
removing an edge never violates properties (PI) or (P2).
This gives rise to the following theorem:

Theorem 1 (M atching)
IF no effect of Vi unifies with any precondition of Vj
THEN £' = £ -{Vi -1- Vj } is legal.

Several edges are missing from the consistency graph

motivating paper. tex), A contains representations of
CD, LS, GREP, and LPQ, M is empty (we know none of
the actor's beliefs), 9 contains G1 = "Find a file named
paper. tex" , G2 = "Find a file named paper. tex that con-
tains motivating" , and G3 = "Find a free printer ."

The initialize function produces a graph similar to the
one in Figure 2 except that it is fully connected.

In the first iteration, the Matching Rule removes 61
edges, resulting in the graph shown in Figure 2. The
Order Rule removes edge {cd /papers-+cd /papers).
The Prefix Rule removes edges {CD-+cd /papers),
{LS-+cd /papers), {CD-+grep), and {LS-+grep).

In the second iteration, Goal Connection removes G1,
G3, and edges {LS-+G1) and {LPQ-+G3)) because they
point to removed goals.

In the third iteration, the Obsolete Rule removes LPQ.
In the fourth iteration, no rules fire. Set { G2} is re-

turned.

strength of this assumption, we can reject a goal if no
plan exists which could achieve it, given the actor's be-
liefs. A simple case where this arises is when a conjunct
of some goal is false in the model M and not supportable
by any effect of any schema in A n V.

Theorem 6 (Impossible Conjunct)
IF 9 E G is insupportable and false in M
THEN V' = V -G is legal.

The Obsolete Rule leverages our assumption that ev-
ery action supports, directly or indirectly, the goal. If
some action schema A is not path-connected to any goal
in r then no instance of A can support any goal in r .
Since r is correct, it contains every consistent goal. Thus
A cannot be in any consistent plan for a consistent goal.

Theorem 7 (Obsolete)
IF (Vi E A) /\ (V gE(Vn9) .-,Connected(Vi , g))

THEN V' = V -Vi is legal.

The following algorithm is a sound goal recognizer that
runs in polynomial time in the size of 11.

Function 2 recognize(11) ::: Apply the rules to quies-
cence on initialize(II). Return all goal schemas in the
resulting graph.

Theorem 8 Recognize is sound and polynomial-time in
the size of 11.

The initialize function produces a correct graph, and
since we only apply legal rules, the final graph is correct
as well. A correct graph contains every consistent goal
schema. Thus our algorithm returns every consistent
goal schema and therefore is sound.

The initial graph contains 19 U A U AI2 elements. In
every iteration, we potentially apply every rule to every
element. Each rule can be applied to an element in linear
time in the size of the graph. Our algorithm halts as
soon as applying all the rules fails to remove anything.
Thus, the maximum number of iterations is the number
of elements in the initial graph. An upper bound for the
worst case running time is thus k x 19 U A UAI6 where
k is the number of rules. rrhis is a loose upper bound,
intended only to show that our algorithm is polynomial.

Our actual implementation is optimized for our cur-
rent rule set. We have analyzed the dependency relation-
ships among our rules, and fire only a subset of the rules
in each iteration. Additionally, we often apply many
rules in a single procedure. We test, for example, the
connectedness between an observed action and all goals
with one procedure rather than a call for each goal. This
is roughly 191 times faster than checking every goal sepa-
rately. Furthermore, although the above algorithm pro-
cesses all observed actions at once, our actual system
is incremental. We fold new actions into the processed
graph rather than re-initialize the graph every time a
new action is observed. When we observe a new action
An, we add An to V, fully connect An to and from every
node and then apply our rules to this new graph.

5 Experimental validation

In this section, we describe how we collected our data,
how we converted it into goal recognition problems, and
how our system performed on these problems.

We gather the raw data as follows. After reading some
instructions, the subjects (students in our department)
are given English goal descriptions. The subjects try to
solve each goal by executing Unix commands. For each
task, the subjects indicate success or failure. We prohibit
subjects from using certain constructs and commands
such as pipes and the command awk.

We converted this raw data into goal recognition prob-
lems. To generate the observed actions A, we matched
each observed U nix command to an instance of our ac-
tion schema for that command. We filtered out com-
mands we considered to be typos. We let A be our ac-
tion schemas for 22 Unix commands, including all those
used by our subjects. We let M = 0, indicating that we
know nothing about the actor's initial beliefs. This is the
most conservative setting. The goal space 9 consisted of
249 goal schemas: 129 file-search goal schemas (goals of
locating a file that has some qualities), 15 assorted (non
file-search) goals, and the 105 pairs of these 15 goals. We
evaluated our goal recognizer on the following goals:

(Gl) Find a file named "core".
(G2) Find a file that contains "motivating" and

whose name ends in ".tex" .
(G3) Find a machine that has low « 1.0) load; and

determine if Oren Etzioni is logged into the ma-
chine named chum.

(G4) Compress all large (> 10,000 bytes) files in the
Testgrounds subdirectory tree.

Goals Gl and G2 are two of the 129 file-search goals.
Goal G3 is one of the 105 pairs of the assorted goals.
This goal demonstrates our ability to handle interleaved
plans for multiple goals. Goal G4 is one of the 15 assorted
goals. Table 1 summarizes our results. An update is
when one observed action is processed. The length of
the plan is the number of actions the subjects executed
to achieve the given goal. The remaining goals are the
goals still in the graph after the last update.

4.1 Example trace

Now we present a sample trace. The input to the recog-
nizer is n = {A, M, A, g) where A = [cd /papers, grep

cpu

seconds pel

u~date

updates
until subset
convergence

goals
remalm~..

goal

G1-~6
G~ I 1.643

length

of

plan

~-
HtiI6- 3.0

20.5

~

K:s

! 55 37

1

15

G3
~

~

""T6IO

For goal 03, the subject's first command always indi-
cated that part of their goal either was to find a machine
with a low load, or to determine if Oren was logged into
chum. Thus, subset convergence occurred immediately.
By the second or third command, the goal space con-
verged to goal 03.

For goal 04, the 15 unrejected goals are 04 itself and
the 14 pairs of the assorted goals that include 04. Noth-
ing the subjects did to achieve 04 was contrary to (or
inconsistent with) the goal of compressing all large files
and, for example, finding a free printer. Again, subset
convergence detects, early on, that all 15 goals include
the goal of compressing the large files.

Table 1: Summary of results. An update is processing one
observed action. The length of the plan is the number of
actions executed to achieve the given goal. We ran our algo-
rithm, coded in Lisp, on a SPARC-I0. Each number is the
average over data gathered from two to four subjects.

Our goal recognizer performed very well on these data.
The average time to process an observed action was
1.4 cpu seconds on a SPAR,C 10 by code written in lisp.
Although the goal recognizer is incomplete in general,
it detected every inconsistency between the goals and
observations in our experiments. Thus, our algorithm
solved the goal recognition problem, as we have formu-
lated it, very thoroughly and very quickly.

But did it work? Did our mechanism recognize peo-
pIe's goals? In some sense, goal recognition occurs when
the recognizer returns a single, consistent goal. This
rarely occurred in our experiments. For example, for
goal G1, over half the goals remain. The subjects only
executed cd and Is until they found core. These com-
mands both support almost all file related goals. Thus,
almost all file related goals are consistent with the entire
plans executed to solve goal G1.

A common assumption in many plan recognition
paradigms is that the actor's actions will eventually serve
to distinguish a single plan (or goal). Our investigations
suggest this is unlikely to be true in the Unix domain,
even with relatively small sets of possible goals. We view
our goal recognizer, which quickly prunes out the incon-
sistent goals, as a useful module. The next step might be
to assign probabilities to the remaining goals. In [Lesh
and Etzioni, 1995] we propose a very different solution
based on version spaces [Mitchell, 1982]. We view goals
as hypotheses. When a single, strongest consistent goal-
hypothesis exists, we know that achieving this goal will
benefit the actor. Due to space limitations, we describe
a special case of this approach, subset convergence, that
works well on these problems.

We define subset convergence to occur when all the
goals in the space share a common (non-empty) subset.
Subset convergence is useful because an agent might be
able to make use of the fact that some goal G' is part of
the actor's goal. The last column in Table 1 indicates
when subset convergence occurred for each goal (except
goal G1, for which subset convergence did not occur).

Consider goal G2. All but 37 goals are rejected when
a grep is observed. The remaining 37 goals all involve
searching for a file that contains some word and, possi-
bly, has some other characteristics (e.g. name ends in
".tex"). The goal of looking for a file that contains some
word is a subset of all 37 of these goals. For G2, subset
convergence occurred, on average, after four actions were
observed, which was an average 9f 12 actions before the
subjects completed the task.

6 Related work

Most plan recognizers (e.g. Kautz's) require, as input, a
plan or event hierarchy which consists of top-level goals,
primitive actions, and composite or complex actions.
Our input, however, differs significantly. Essentially, we
take only the goals (input (;}) and primitive actions (in-
put A) .Our definition of what constitutes a valid plan
for a goal replaces the complex actions. Under our for-
mulation, the goal recognizer must consider how the low
level actions can be composed into plans. Eliminating
the complex actions is significant in that there may be
up to 21AI complex actions in the hierarchy. Although our
input is more compact, it is less expressive; we do not
allow arbitrary constraints to be placed between steps
in plans. We do, however, allow arbitrarily long plans
which an acyclic plan hierarchy does not.

A rarely duplicated feature of Kautz's theory and sys-
tem is the ability to recognize concurrent, interleaved
plans. Kautz assumes that actors execute the minimum
number of consistent plans. We can proceed similarly if
we assume that the concurrent execution of plans P1...Pn
for goals G1...Gn is always the execution of some single
plan p for G11\ ...I\ Gn. The technique to recognize
interleaved goal-solving is to first run our algorithm, as
normal, on the given goal space (;}. If all goals are reo.
jected then run recognition on all pairs of goals, (;}2. If
this space collapses, run recognition on (;}3. And so on.
This approach is not polynomial or sound because we ap-
proximate consistency, if we allow arbitrary numbers of
plans (or goals) to be interleaved. We believe, however ,
that people rarely interleave large numbers of plans. If
we assume that actors only pursue at most, say, 3 or 4
goals simultaneously then our technique, which can ter-
minate at (;}3 or (;}4, becomes polynomial and sound.

There has been some work (e.g. [Pollack, 1990]) on
recognizing invalid plans. We allow some invalid plans,
because we allow all plans which could achieve the goal
based on the actor's incomplete model of the world.
Some of these plans will not achieve the goal when exeo.
cuted from the actual world state. We cannot recognize
plans built out of incorrect models of the action schemas,
as Pollack's system can. Her system does not consider
all allowable plans, as ours does, but instead searches for
a good explanatory plan.

There is some work on trying to select the best or most
probable plan or combination of plans (e.g. [Charniak
and Goldman, 1991]). Our work complements this reo.

search; our recognizer can produce the consistent goals
which can then be subjected to more expensive prob-
abilistic analysis. [Weida and Litman, 1992] extend
term subsumption to include plan recognition, motivated
by the need to organize large numbers of plans, much
like our desire to handle large domains. [Vilain, 1990]
describes a polynomial-time plan recognizer based on
grammatical parsing. His system is sound and complete
on restricted classes of plan hierarchies unlike ours which
approximates consistency relationships based on an ex-
ponentially large plan space. [Bauer et at., 1993]'s def-
inition of when a plan can be refined to include actions
resembles our definition of a plan being consistent with
actions, but their computational approach is quite dif-
ferent from ours.

position to address these issues.
Although our algorithm and formal results are

domain-independent, this does not guarantee that our
goal recognizer will be effective in every domain. Our
case study in Unix indicates that our goal recognizer per-
forms well there. We believe these results suggest that
our approach will also work well in various software do-
mains. More generally, our approach is particularly well
suited to two classes of goals. First, conjunctive search
goals, such as the goal of looking for a file that is large,
that has not been touched for a month, etc. Second,
conjunctive set goals, such as compressing all files that
are large, that have not been touched for a month, etc.
Plans for both classes of goals can be very long, and thus
task completion will be especially useful.

7 Critique and future work

Our algorithm requires polynomial time in size of the in-
put. A more sophisticated algorithm, described in [Lesh
and Etzioni, 1995], runs in time linear in the number of
input goals (though still polynomial in IAI). But reason-
able goal spaces may be exponentially large in relevant
features of the domain, such as the number of predi-
cates. Our solution is based on version spaces [Mitchell,
1982]. We view goals as hypotheses and explicitly com-
pute only the strongest consistent hypotheses and the
weakest consistent hypotheses. These two boundaries
compactly represent the set of all consistent goals. In
[Lesh and Etzioni, 1995], we identify a class of goals such
that we can determine the consistency of 2n goals by ex-
plicitly computing consistency on only n goals.

Currently, we strongly leverage our assumption that
every action in the actor's plan supports another action
or the goal. On this basis we reject the goal of find-
ing a free printer if we observe cd /papers. However, if
we completely model our domain, then most actions can
contribute to most goals. If the actor is searching for
a file that contains printer names then cd /papers can
(indirectly) support finding a free printer. The problem
is not that we fail to recognize this obscure plan but that
we fail because we don't model the world well. Eventu-
ally, we will need a stronger constraint than our current
one that every action support another action or the goal.

On the other hand, our approach is sensitive to noisy
or spurious actions. We assume every observed action is
part of a goal-directed plan. This may not adequately
capture the role of certain actions such as returning to
one's home directory or mopping one's brow. We are
currently exploring the possibility of learning which ac-
tions are regularly spurious by observing the actor over a
long period of time. These actions could then be filtered
out from the observations.

We have not yet addressed several additional issues.
Recall that the input observations are actions in our for-
mal action language. But how do we automatically pro-
duce, for example, an instance of the CD action schema
from the observable string cd /papers? What if the
actor executes a command which fails? Furthermore,
how do we know when the actor finishes one task and
begins another? We believe that our goal consistency
framework and experimental apparatus puts us in good~

References

[Bauer et al., 1993] M. Bauer, S. Biundo, D. Dengler,
J. Kohler, and Paul G. Phi-a logic-based tool for intelli-
gent help systems. In Proceedings of the lSth International
Joint Conference on Artificial Intelligence. 1993.

[Charniak and Goldman, 1991] E. Charniak and R. Gold-
man. A probablistic model of plan recognition. In Proc.
9th Nat. Conf. on A.I., volume 1, pages 160-5, July 1991.

[Etzioni et al., 1992] 0. Etzioni, S. Hanks, D. Weld,
D. Draper, N. Lesh, and M. Williamson. An Approach
to Planning with Incomplete Information. In Proc. Srd
Int. Conf. on Principles of K nowledge Representation and
Reasoning, October 1992.

[Etzioni, 1991] Oren Etzioni. STATIC: A problem-space
compiler for prodigy. In Proc. 9th Nat. ConI on A.I.,
1991.

[Goodman and Litman, 1992] B. Goodman and D. Litman.
On the interaction between plan recognition and intelligent
interfaces. In User Modeling and User Adapted Interaction,
volume 2, no.1-2, pages 83-115, 1992.

[Kautz, 1987] H. Kautz. A Formal Theory Of Plan Recogni-
tion. PhD thesis, U niversity of Rochester, 1987.

[Lesh and Etzioni, 1995] N. Lesh and 0. Etzioni. A sound,
fast, and empirically-tested goal recognizer based on ver-
sion spaces. Technical report, Draft. University of Wash-
ington,1995.

[Mitchell, 1982] T. Mitchell. Generalization as search. Arti-
ficial Intelligence, 18:203-226, March 1982.

[Pollack, 1990] M. Pollack. Plans as Complex Mental Atti-
tudes, pages 77-101. MIT Press, Cambridge, MA, 1990.

[Smith and Peot, 1993] D. Smith and M. Peot. Postponing
threats in partial-order planning. In Proc. llth Nat. Conf.
on A.I., pages 500-506, June 1993.

[Vilain, 1990] M. Vilain. Getting serious about parsing
plans: a grammatical analysis of plan recognition. In Proc.
Bth Nat. Conf. on A.I., pages 190-197, 1990.

[Weida and Litman, 1992] R. Weida and D. Litman. Ter-
minological Reasoning with Constraint Networks and an
Application to Plan Recognition. In Proc. Srd Int. Conf.
on Principles of K nowledge Representation and Reasoning,
October 1992.

