

Abstract—We argue that an ability to determine the

reversibility of actions allows a robot to identify safe behaviors
autonomously. We introduce a notion of reversibility model
and give a definition of model refinement. We implement this
on a real robot and observe that, when a reversibility model is
refined by the addition of proximity sensors, obstacle avoidance
emerges as a side-effect of avoiding irreversible actions. We
interpret this as evidence of a deep connection between
reversibility and safe behaviour. We also observe that, on the
real robot, reversiblities are learned as efficiently as a
dedicated reward function. We conclude that reversibility
identification may provide an abstract and yet practical method
of generating a variety of safe behaviours.

I. INTRODUCTION

This paper is concerned with a robot’s ability to undo its
actions. We suggest that reversibility, being a necessary
condition of controllability, is a fundamental concept when
programming robots to behave safely and reliably. We ask if
this principle can be used to govern the operation of the
robot, and to generate useful behaviour on a real robot and in
real time.

We speculate that the most undesirable actions in the real
world (for example, those that damage the robot or the
environment) are characterized by irreversibility. Thus,
instead of teaching the robot specific routines such as
avoiding collisions, avoiding falls, etc., we teach the robot a
more general principle of avoiding irreversible actions. In
other words, instead of telling the robot what should not be
done, we try to tell it why it should not be done. For
example, falling down the stairs is not good because the
robot does not know how to climb back or pushing the door
closed is not good because it does not have knowledge of
how to open it.
In this paper, we state the problem of learning a reversibility
model. The reversibility model captures the robots

This work was supported in part by the Estonian Science Foundation

grant No. 6765.
 Maarja Kruusmaa, corresponding author is with the Tartu University

Institute of Technology, Nooruse 1, 50411 Tartu, Estonia. Phone: (+372) 51
83074, fax: (+372) 7374900, e-mail: maarja.kruusmaa@ut.ee

Yuri Gavshin is with Dept. of Computer Science, Tartu University, Liivi
2, Tartu, Estonia, e-mail: yuri.gavshin@ut.ee

Adam Eppendahl is with the Department of Design and Manufacturing,
University of Malaya, Kuala Lumpur, Malaysia, e-mail:
a.eppendahl@mac.com

knowledge of state-action pairs that are reversible and the
ways of reversing them. We go on to demonstrate how this
reversibility model can be acquired and used to generate new
behaviours. In our experiments we show that by suppressing
irreversible actions the robot will develop obstacle
avoidance behaviour. As a developmental system, the
efficiency of this approach is comparable to reinforcement
learning. The difference here is that the reinforcement
learning algorithm requires a signal that identifies collisions
and labels them as the undesirable, while the reversibility
algorithm identifies the undesirable behaviours by their
abstract properties and this just happens to result in collision
avoidance. Thus we see a safe concrete behaviour emerging
autonomously from a very abstract universal principle.

An enormous amount of robot literature is concerned with
algorithms for avoiding collisions as this is considered an
essential ability for mobile robots. In this literature, the goal
of avoiding collisions is explicitly stated [1], while the
solution may be coded for by hand or obtained indirectly
using learning algorithms [2,3]. Efficient navigation can be
learned, for example, by using genetic algorithms [4],
adaptive fitness functions [5], neural networks [6] or Q-
learning [7]. In [8], navigation behaviours are derived by
classifying random sensor data. Our approach is different in
that reliable navigation emerges from an abstract rule. The
rule is not grounded in a specific sensor-motor semantics
that explicitly identifies collisions. The resulting
developmental system is insensitive to sensor permutations
and inversions. The practical benefit of this is that the code
can be written without knowing the location or polarity of
sensors and actuators.

The idea of generating behaviours top-down from abstract
principles is an emerging theme in parts of the autonomous
robotics community. In developmental robotics, for
example, relatively abstract emotional and motivational
mechanisms are used to derive behaviours that facilitate
social interaction
[9] [10]. Kaplan and Odeyer show that a number of basic
visual behaviours can emerge from abstract motivational
principles based on prediction errors [11]. The general idea
behind the approach is to identify principles that can be
expressed without reference to the ground meaning of
sensor-motor values. Code based on such principles should
function reliably in a broad range of environments and on
different robots or on different parts of the same robot. Our
principle of avoiding irreversible actions provides just one
example of such an abstract ungrounded principle.

Don’t Do Things You Can’t Undo:
Reversibility Models for Generating Safe Behaviours

Maarja Kruusmaa, Yuri Gavshin, Adam Eppendahl

In the following section we present these ideas about
reversibility in a more formal manner. After that, we
describe an experimental set-up for a Khepera mini-robot to
test the reversibility principle. We describe the experimental
design and present the results. In the last section we discuss
the results, draw conclusions and envision possible
directions for future work.

II. REVERSIBILITY MODELS

A reversibility model tells the robot which actions are
reversible and how to reverse them if they are. In a fixed,
known, exact, deterministic world, modelled by a graph G
of states and actions, an action from state s to state 's is
reversible if there is an action back from 's to s . If we
admit sequences of actions, by taking)(0GPathG = (the

graph of paths over 0G), where 0G is some graph of atomic

actions, then finding reversibilities in G is equivalent to
finding loops in 0G , a standard problem in graph theory.

 This is all very well for playing Sokoban, but real robots
face a non-deterministic, inexact, partially known and
changing world. Therefore, we model non-determinism
using labelled transition systems, we allow inexactness with
a metric on the space of states, and we define a reversibility
model pragmatically to be a set of expected reversibilities
that may grow or shrink as the robot gains experience.

In addition, the robot may itself be changing as it learns,
develops or reconfigures, and this is what interests us most.
In this paper we consider one such change, the addition of
sensors, and introduce a notion of refinement that captures
the relationship between the robot’s world before and after
the change. In the learning experiments we describe, a
reversibility model for an unrefined world is adapted to a
refined world (with the interesting side-effect of producing
obstacle avoidance behaviour).

Suppose we have a set of states given by vectors of sensor
values and a set A of actions given by vectors of motor
commands. If we view the states as the nodes in a graph and
the actions as labels, the robot’s body and environment
determine a labelled transition system which we refer to as
the robot’s world. A labelled transition system is a standard
structure for modelling non-determinitstic systems and
consists of a directed graph with edges, called transitions,
labelled by actions. When the result of an action a in state
s is not wholly determined by the robot, multiple transitions
from s are labelled with the same action a and it is the
world that determines which transition actually happens.
A reversibility for a world W is a state-action pair),(as ,
together with a state-action pair),'(as . A reversibility may
or may not hold, in a mathematical sense or in a physical
sense. Generally speaking, a is expected to produce a
transition from 's to s , assuming a produces a transition
from s to 's

to 's in W . Because of the non-determinism, even given a
perfectly known world W , there are different ways to define
‘holding’. A reversibility)),'(),,((asas may hold weakly
if there exists in W a transition from s to 's labelled a
and a transition from 's to s labelled a . Or, it may hold
strongly if there exists a transition from s to 's labelled a
and every transition from 's labelled a , and at least one,
leads to s . In our implementation, we use the strong
definition. Also, the action a is expected to work for any
state x with d(x,s') < ε'and is only expected to produce a
transition back to a state y when d(y,s) < ε , where d is a
metric on states.

A reversibility model for a world W is a set of
reversibilities for W that are expected to hold. In practice, a
reversibility model could be given in advance,
communicated to the robot, learned empirically, deduced
from knowledge about the world, or obtained in some other
way. In the experiments described here, the robot is given a
model for one world and uses this to learn a model for a
refined world.

A refinement (of states) from a world W to a world 'W
is a pair of functions from the states and transitions of W 'to
those of W that respects the graph structure and labelling
and is surjective on states. In other words, every state in W
is the image of one or more states in 'W , which ‘refine’ the
state in W , and the action on an edge in 'W is given by the
action on the edge it is sent to in W .

For any reversibility model R for a world W and for
any refinement from W to 'W , with state function p ,
there is a refined set of reversibilites 'R on 'W defined by

R'= {((s,a),(s',a)) | ((p(s),a),(p(s'),a) ∈ R}.
To obtain a reversiblity model for the new world 'W we
may form 'R and then remove any pairs that fail in the
refined world. An important aspect of this procedure is that
‘it gives the robot something to do’: the original model R
provides a specific list of actions together with the
circumstances in which they should be tried.

The kind of refinement we have in mind is produced by
extending a robot’s sensor vector. Suppose we have a world
with states given by pairs of wheel counter values
(w1,w2)and actions given by pairs of wheel displacement
commands (m1,m2) . Assuming the robot is able to control
its own wheels, this world is fairly deterministic, all actions
are reversible and a good reversibility model R is given by
taking a = (−m1,−m2)when a = (m1,m2) (for any s and

's).
Now suppose we include one proximity value (say, the

front sensor) in the state vector),,(121 dww . Assuming the
new sensor does not effect the robot’s environment, we
obtain a refinement of the original world. The state function
p is the projection

),(),,(21121 wwdwwp = .

When the simple model R described above is refined
according to this new world some of the refined
reversibilities hold and some do not. In our experiments, the
robot tests these refined reversibilities to discover which
hold.

The interesting point here is that the ones that fail
generally correspond to collisions of some sort. Consider the
following four cases (in which wheel counts and proximities
are given, without loss of generality, in comparable units).
(1) The robot does not touch anything: we obtain, say, the
successful reversiblity

(((0, 0, 15), (10, 10)), ((10, 10, 5), (−10, −10)),

where the robot approaches and retreats from an object
without touching it. (2) The robot touches an object and the
object slides: we obtain a failed reversibility, say

(((0, 0, 8), (10, 10)), ((10, 10, 0), (−10, −10)),

where the robot runs into an object, pushing it 2 units
forward, then retreats, and then finds that, while its wheel
encoders are back to 0 as expected, its proximity sensor now
reads 10 instead of the original 8. (3) The robot touches an
object and its wheels slide: from the robots point of view,
this is identical to case 3. (4) The robot touches an object
and jams: if motor commands time-out and report success,
adjusting the wheel encoder counts as necessary, then this
case is again identical to case 3 (and may be thought of as a
kind of internal sliding).

Not only does the robot discover that it is ‘bad’ to push
things—without ever knowing what pushing is!—but the
refined state allows the robot to distinguish those cases in
which ‘bad things happen’ from those in which they do not.
Once the robot learns a reversibility model, it may use the
model to censor its actions. Because of the non-determinism,
we have a growing choice of definitions. A state-action pair

),(as is weakly (strongly) reversible in world W , if there
is a reversibility)),'(),,((asas that holds weakly
(strongly) in W for every 's that can be reached from s by
an a transition. Alternatively, we could ask for just one
such 's . In our experiments, we use, in effect, the strong
definition, but because we pretend the world is deterministic
by ignoring s (by taking ε'= ∞), there is no real difference.

Note that it is our method of creating a reversibility model
out of 'R (by pruning) that creates a ‘pushing is bad’ model.
Alternatively, when a reversibility)),'(),,((asas in

'R fails, we could try replacing the action a instead of
throwing out the reversibility. For example, we could
construct the world W)'('' WPathW = . The transitions
in)'(WPath are paths of transitions in 'W labelled by
sequences of actions from 'W . The world 'W embeds in

''W , along with 'R , but now we have sequences of actions

to play with. In the object pushing example, a sequence b
of actions might cause the robot to go behind an object, push
it back 2 units, and then return to its original place in front of
the object, so that

(((0, 0, 8), (10, 10)), ((10, 10, 0),b),

holds in ''W . Or we could form ''W by add a gripping
action and simply drag the object back 2 units.

III. EXPERIMENTS
This section describes two learning algorithms. One learns
which reversibilities hold or fail when the robot’s world is
refined by the addition of eight proximity sensors. The other
one is a reinforcement algorithm with a reward function that
punishes collisions. The learning performance of the two
algorithms are compared in two test environments, an easy
one and a harder one, and with two sets of actions, 1D and
2D.

A. Implementation Details
An action a = (m1,m2) consists of a pair, left and right, of
motor displacement commands expressed in the native
wheel decoder units. A discrete set of actions is used in the
experiments:
a1 = (100,100) short step forward,
a2 = (300,300) long step forward,
a3 = (−100,−100) short step backward,
a4 = (−300,−300) long step backward,
a5 = (100,−100) rotate clockwise, and
a6 = (−100,100) rotate counterclockwise.
In the 1D experiments, we take },a,a,a{a 4321=A .
These actions cause the robot to move back and forth in a
straight line. In the 2D experiments, we include the turning
actions, },,,,,{ 654321 aaaaaa=A .
We provide the robot with the initial reversibility model
{((x,a1),(x + (100,100),a3),

((y,a2),(y + (300,300),a4)),

((z,a5),(z + (100,−100),a6))},

where x , y and z are any states (w1,w2) , consisting of a
pair of wheel counter values. Because we have fixed things
so that wheel commands always succeed, the reversibilities
in this model always hold. We then use (in effect) a
refinement function p , the projection from the set of states
(w1,w2,d1,d2,d3,d4,d5,d6,d7,d8) , which include eight
proximity values, to the original set of states without the
proximity values, to induce a new set of refined
reversibilities from the original set. The new set contains, for
example,

((s,a1),(s',a3)) =
(((w1,w2,d1,d2,d3,d4 ,d5,d6,d7,d8),a1),

((w1 + 100,w2 + 100,d'1 ,d'2 ,d'3 ,d'4 ,d'5 ,d'6 ,d'7 ,d'8),a3),

for any wi, di and d'i . The learning algorithm then tests
these to see which hold and which fail.

For our definition of ‘near’, we use the Hamming metric

defined by d(s,s') = wi − w'i
i=1

2

 + di − d'i
i=1

8

 ,

(but because our wheel commands always succeed, and the
original model is correct, the wheel value part of this is
always 0.) In our set-up we know that if the robot drives
against an object, the wheels will jam (instead of sliding) so
we can detect collisions by watching for wheel controller
time-outs.

Fig. 1. Experimental setup.

1) Robot motion. The Khepera runs in a real, physical
environment with motions that test the pairs of the refined
reversibility model. The robot moves according to the
following algorithm:

1. Record current state si = (w1,w2,d1,...,d8).
2. Choose an arbitrary reversibility from R'

and execute the forward action as ai.

3. Record the state si+1 = (w'1,w'2 ,d'1 ,...,d'8)
4. Execute the reverse action as ai+1.

5. Add 2 to i.
So the robot performs a random action, then it’s reverse
action, and then another random action, etc.

 2) Learning the reversibility model. As the robot moves
about, it notes how well the reversibilities hold using the
Hamming metric.

For each forward action ai, calculate and

store d(si,si+2).
For the purposes of comparison with the reinforcement
algorithm, the model is also used to predict which actions
will be successfully reversed. When a failure is predicted,
we note whether there is a collision during the action. So we
are judging the reversibility model not by what it is meant to
be learning, but by how well this happens to predict
collisions.

1. Get the current state is and the intended

action ai

2. From memory, choose a state-action pair

(sk ,ak) that minimizes d(sk,si).

1. If we do not have d(sk ,si) < δ predict

randomly. Otherwise, predict a collision

unless d(sk,sk +1) < ε .

2. While executing the command ai check if

there is a collision. Store the predicted
and the actual outcome.

3) Reinforcement learning. Reinforcement learning
algorithms are commonly used for learning in mobile
robotics. The goal here is to implement a simple version for
collision avoidance to compare the ungrounded reversibility
method to a standard, grounded method. We have therefore
implemented the reinforcement learning algorithm so that
the robot is operating under similar conditions. First, the
algorithm does not have a terminal state, so collision
avoidance is considered to be a continuous task of reward
maximization. Second, the current version of the
reversibility policy is concerned only with immediate actions
and reverse actions and does not work along the history of
action sequences. Therefore we have also implemented the
reinforcement algorithm to be concerned only with
immediate rewards, thus with discount rate 0=γ . The
initial value of the action value function is Q(si,ai) = 0 .
The reward signal is defined by checking for collisions.

r =
w1 + w2 /100, if there is no collision

−5, if there is a collision

Thus a successful action is rewarded more if it moves the
robot for greater distance and an unsuccessful action is
strongly penalized.
Note that the reinforcement learning algorithm directly
checks for collisions to calculate the reward, while the
algorithm learning the reversibility model only aims at
predicting if the robot can return to the initial state.
The reinforcement learning algorithm is the following:

1. Get the current state is and the intended

action ai

2. If the current value of the action value

function Q(si,ai) > 0, predict no

collision. Predict a collision otherwise.

If Q(si,ai) = 0 make a random prediction.

3. After executing ai get the reward signal

r .
4. Update the action value function

Q(si,ai) ← αr + Q(si,ai) where the learning
rate α = 0.1.

5. While executing ai, check for collisions.

Store the predicted and the real outcome.

B. Test environments
In the following experiments we compared the learning of
reversibility models to the learning of a reward function that
discourages collisions. To find out how sensitive the
learning algorithms are to environmental conditions, the
tests are conducted in two environments. Environment II is
smaller than Environment I, the collisions with walls at each

move are more probable. Also the walls are not
perpendicular as in Environment I. In both environments the
algorithms are implemented in 1D and 2D to get the estimate
of their scalability. In 1D the robot can move only back and
forth, while in 2D turning is permitted.

IV. RESULTS

As it was specified in the previous section, the robot
operates by executing reversed and random actions. The
reversed actions are determined according to the initial
reversibility model. The goal of the learning algorithms is to
observe and learn to predict the outcomes of the actions.
These predictions are then compared to the real outcome of
the action (determined by detecting collisions) and the
success rate of both of the policies is recorded. The tests are
conducted in 1D environment where only the back and forth
moves are permitted and in 2D where turning actions are
also included.
Fig. 2 – Fig. 5 represent the test results in both test
environments. All charts represent the average correctness of
predictions for every successive 100 actions for both
prediction policies.
From Fig. 2 and Fig. 4 it can be seen that in both
environments, the robot learns very fast to avoid collisions
in 1D, the rate of successful predictions reaches 80%-90%
during the first 200-300 steps and the learning problem is
equally trivial for both learning algorithms.
In 2D, the turning actions make the learning problem more
complicated, both algorithms reaching similar accuracy
around 1900-2100 steps. Environment I is more “friendly”
for the robot while in Environment II the collisions are much
more likely to occur.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Nr. of actions (x100)

C
or

re
ct

 p
re

di
ct

io
ns

 (%
)

Reinforcement learning Reversibility model

Fig. 2. Test results in environment I, in 1D

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
Nr. of actions (x100)

C
or

re
ct

 p
re

di
ct

io
ns

 (%
)

Reinforcement learning Reversibility model

Fig. 3. Test results in environment I, in 2D

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Nr. of actions (x100)

Co
rr

ec
t p

re
di

ct
io

ns
 (%

)

Reinforcement learning Reversibility model

Fig. 4. Test results in environment II, in 1D

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
Nr. of actions (x100)

C
or

re
ct

 p
re

di
ct

io
ns

 (%
)

Reinforcement learning Reversibility model

Fig. 5. Test results in environment II, in 2D

Also, during the tests in Environment II the wheels
occasionally got stuck on the uneven surface. These
occasions can be seen on the charts around 1400-1700 steps
in 1D (Fig.4) and 3700-4100 in 2D (Fig.5) with the sharp
downward peaks of the prediction rates. It appears that
reinforcement learning adapts and recovers better in these
occasions. However, this is caused more by the method we
use to determine the prediction rate than the failure of the
method of learning the reversibility model. For the robot
with the blocked wheels the reversibility of actions is
perfect, since the robot certainly ends up in the same state it
starts from. However, if this success of the prediction is
judged by whether or not the wheels jam, the prediction is
wrong.

The general conclusion drawn from the experimental results
is that both methods learn to predict collisions with
comparable speed. The reinforcement learning algorithm
uses a reward signal determined by the outcome of an action
whereas the reversibility policy uses the reversibility
measure to refine the initial reversibility model.
The reversibility model is learned with a roughly similar
speed in Environment I whereas in Environment II
reinforcement learning policy performs slightly better. Also,
upscaling from 1D to 2D environment is equally efficient for
both approaches.
The most important comment is that the aim of this research
is not to develop a competitive learning technique for
collision avoidance but rather to introduce a new general
principle that can be used in combination with existing
methods. Our method does not learn how to avoid obstacles,
it learns how to repeat its actions. An important result of the
experiments is that a useful behaviour derived from a
general abstract principle can be learned as fast as by an
established method for learning collision avoidance.

V. CONCLUSIONS

This paper introduces the concept of reversibility for
learning robots. We show that reversibility models can be
used to learn a useful new behaviour. The experiments
verify the performance of the reversibility method against a
well-established method of learning commonly used in
robotics. The results show that both of the methods converge
to obstacle avoidance behaviour.
The most general conclusion drawn from the experimental
results is that the efficiency of the policy of reversibility is
comparable to reinforcement learning. Both methods learn
more or less equally, converging to satisfactory
performance. The basic difference of these methods is that
the reinforcement learning algorithm uses a reward signal
explicitly designed to make the robot avoid obstacles. The
policy we introduce, uses a reversibility measure to learn a
reversibility model, and yet the robot learns the useful
behaviour of collision avoidance.
Based on these experimental results we speculate that the
concept of reversibility could generate a variety of useful
behaviours depending on the properties of the environment.
We surmise, that for example for a robot, placed initially
close to an object or wall, the robot using reversibility
models might discover behaviours like “do not leave the
territory” or “stay in the vicinity of guidlines”. Our future
experiments are planned to check this hypothesis and find
more evidence concerning the robustness of the principle.
Another hypothesis we are planning to test is whether
learning algorithms can be accelerated by using reversibility
models. Generally, learning algorithms converge to a stable
behaviour by repeating actions that lead from one state to
another. It is not explained, however, how the robot gets
back to the state it wants to repeat. Knowing the reversibility
model, it may be easier to guide the learning algorithm to
faster convergence.
We also suggest that reversibility models could be used in
combination with formal reasoning methods, such as task or

path planning, where the plans can be checked for
reversibility. For mobile robots such a reversibility check
could, for example, guarantee safe homing or safe
exploration. We suggest that the concepts introduced in this
paper may provide handy and simple guidelines for building
safe and reliable robots.

REFERENCES

[1] J. Borenstein, Y.Koren, Real-time obstacle avoidance for fast mobile

robots“ in IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 19, No. 5, Sept./Oct., pp. 1179-1187.

[2] R.Arkin, “Behavior-based robotsics,” MIT Press: Cambridge, MA
[3] S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How to evolve

autonomous robots: Different approaches in evolutionary robotics. In
R. Brooks and P. Maes, ed.s, Artificial Life IV, pages 190--197. MIT
Press/Bradford Books, 1994..

[4] D.Bajaj, M. Ang, Jr., “An incremental approach in evolving robot
behavior,” in Proceedings of the Sixth International Conference on
Control, Automation, Robotics and Vision (ICARCV’2000),5-8 Dec
2000, Singapore.

[5] E. Uchibe, M.Yanase, and M. Asada. “Behavior generation for a
mobile robot based on the adaptive fitness function,” in Robotics and
Autonomous Systems, Vol.40, pp.69-77, 2002.

[6] J. Blynel, D. Floreano, “Exploring the T-Maze: Evolving Learning-
Like Robot Behaviors using CTRNNs,” In Applications of
Evolutionary Computing, 2003.

[7] G.-S. Yang, E.-K. Chen, C.-W. An, “Mobile robot navigation using
neural Q-learning”, in Proc. Of Int. Conf of Machine Learning and
Cybernetics, Vol.1, pp. 48-52, 2004.

[8] E. Simonin, J. Diard, P. Bassiere, “Learning Bayesian models of
sensorimotor interaction: from random exploration toward the
discovery of new behaviors,” In Proc. Of 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1226-
12231.

[9] C. Breazeal, Designing Sociable Robots, Cambridge:MIT Press. 2002
[10] L. Moshkina, R.C.Arkin, “On TAMEing Robots”, Proc. IEEE

International Conference on Systems, Man and Cybernetics, Vol. 4,
pp. 3949-3959. Oct. 2003.

[11] F. Kaplan, P.Y. Oudeyer, „Motivational principles for visual know-
how development,” In P,roceedings of the Third International
Workshop on Epigenetic Robotic,s 2003.

[12] R.S.Sutton, A.G.Barto, Reinforcement Learning. An Introduction,
MIT Press, Cambridge, MA, 1998, A Bradford Book

