
 
 

  

 
Abstract—We argue that an ability to determine the 

reversibility of actions allows a robot to identify safe behaviors 
autonomously. We introduce a notion of reversibility model 
and give a definition of model refinement. We implement this 
on a real robot and observe that, when a reversibility model is 
refined by the addition of proximity sensors, obstacle avoidance 
emerges as a side-effect of avoiding irreversible actions. We 
interpret this as evidence of a deep connection between 
reversibility and safe behaviour. We also observe that, on the 
real robot, reversiblities are learned as efficiently as a 
dedicated reward function. We conclude that reversibility 
identification may provide an abstract and yet practical method 
of generating a variety of safe behaviours.  

I. INTRODUCTION 
 

This paper is concerned with a robot’s ability to undo its 
actions. We suggest that reversibility, being a necessary 
condition of controllability, is a fundamental concept when 
programming robots to behave safely and reliably. We ask if 
this principle can be used to govern the operation of the 
robot, and to generate useful behaviour on a real robot and in 
real time.  

We speculate that the most undesirable actions in the real 
world (for example, those that damage the robot or the 
environment) are characterized by irreversibility. Thus, 
instead of teaching the robot specific routines such as 
avoiding collisions, avoiding falls, etc., we teach the robot a 
more general principle of avoiding irreversible actions. In 
other words, instead of telling the robot what should not be 
done, we try to tell it why it should not be done. For 
example, falling down the stairs is not good because the 
robot does not know how to climb back or pushing the door 
closed is not good because it does not have knowledge of 
how to open it.  
In this paper, we state the problem of learning a reversibility 
model. The reversibility model captures the robots 
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knowledge of state-action pairs that are reversible and the 
ways of reversing them. We go on to demonstrate how this 
reversibility model can be acquired and used to generate new 
behaviours. In our experiments we show that by suppressing 
irreversible actions the robot will develop obstacle 
avoidance behaviour. As a developmental system, the 
efficiency of this approach is comparable to reinforcement 
learning. The difference here is that the reinforcement 
learning algorithm requires a signal that identifies collisions 
and labels them as the undesirable, while the reversibility 
algorithm identifies the undesirable behaviours by their 
abstract properties and this just happens to result in collision 
avoidance. Thus we see a safe concrete behaviour emerging 
autonomously from a very abstract universal principle. 

An enormous amount of robot literature is concerned with 
algorithms for avoiding collisions as this is considered an 
essential ability for mobile robots. In this literature, the goal 
of avoiding collisions is explicitly stated [1], while the 
solution may be coded for by hand or obtained indirectly 
using learning algorithms [2,3]. Efficient navigation can be 
learned, for example, by using genetic algorithms [4], 
adaptive fitness functions [5], neural networks [6] or Q-
learning [7]. In [8], navigation behaviours are derived by 
classifying random sensor data. Our approach is different in 
that reliable navigation emerges from an abstract rule. The 
rule is not grounded in a specific sensor-motor semantics 
that explicitly identifies collisions. The resulting 
developmental system is insensitive to sensor permutations 
and inversions. The practical benefit of this is that the code 
can be written without knowing the location or polarity of 
sensors and actuators.  

The idea of generating behaviours top-down from abstract 
principles is an emerging theme in parts of the autonomous 
robotics community. In developmental robotics, for 
example, relatively abstract emotional and motivational 
mechanisms are used to derive behaviours that facilitate 
social interaction    
[9] [10]. Kaplan and Odeyer show that a number of basic 
visual behaviours can emerge from abstract motivational 
principles based on prediction errors [11]. The general idea 
behind the approach is to identify principles that can be 
expressed without reference to the ground meaning of 
sensor-motor values. Code based on such principles should 
function reliably in a broad range of environments and on 
different robots or on different parts of the same robot. Our 
principle of avoiding irreversible actions provides just one 
example of such an abstract ungrounded principle.  
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In the following section we present these ideas about 
reversibility in a more formal manner. After that, we 
describe an experimental set-up for a Khepera mini-robot to 
test the reversibility principle. We describe the experimental 
design and present the results. In the last section we discuss 
the results, draw conclusions and envision possible 
directions for future work. 

II. REVERSIBILITY MODELS 
 

A reversibility model tells the robot which actions are 
reversible and how to reverse them if they are. In a fixed, 
known, exact, deterministic world, modelled by a graph G  
of states and actions, an action from state s  to state 's  is 
reversible if there is an action back from 's  to s . If we 
admit sequences of actions, by taking )( 0GPathG = (the 

graph of paths over 0G ), where 0G is some graph of atomic 

actions, then finding reversibilities in G  is equivalent to 
finding loops in 0G , a standard problem in graph theory. 

 This is all very well for playing Sokoban, but real robots 
face a non-deterministic, inexact, partially known and 
changing world. Therefore, we model non-determinism 
using labelled transition systems, we allow inexactness with 
a metric on the space of states, and we define a reversibility 
model pragmatically to be a set of expected reversibilities 
that may grow or shrink as the robot gains experience.  

In addition, the robot may itself be changing as it learns, 
develops or reconfigures, and this is what interests us most. 
In this paper we consider one such change, the addition of 
sensors, and introduce a notion of refinement that captures 
the relationship between the robot’s world before and after 
the change. In the learning experiments we describe, a 
reversibility model for an unrefined world is adapted to a 
refined world (with the interesting side-effect of producing 
obstacle avoidance behaviour).  

Suppose we have a set of states given by vectors of sensor 
values and a set A  of actions given by vectors of motor 
commands. If we view the states as the nodes in a graph and 
the actions as labels, the robot’s body and environment 
determine a labelled transition system which we refer to as 
the robot’s world. A labelled transition system is a standard 
structure for modelling non-determinitstic systems and 
consists of a directed graph with edges, called transitions, 
labelled by actions. When the result of an action a  in state 
s is not wholly determined by the robot, multiple transitions 
from s are labelled with the same action a  and it is the 
world that determines which transition actually happens.  
A reversibility for a world W is a state-action pair ),( as , 
together with a state-action pair ),'( as . A reversibility may 
or may not hold, in a mathematical sense or in a physical 
sense. Generally speaking, a is expected to produce a 
transition from 's to s , assuming a  produces a transition 
from s to 's  

to 's  in W . Because of the non-determinism, even given a 
perfectly known world W , there are different ways to define 
‘holding’. A reversibility )),'(),,(( asas may hold weakly 
if there exists in W  a transition from s  to 's  labelled a  
and a transition from 's  to s  labelled a . Or, it may hold 
strongly if there exists a transition from s  to 's  labelled a  
and every transition from 's  labelled a , and at least one, 
leads to s . In our implementation, we use the strong 
definition. Also, the action a is expected to work for any 
state x  with d(x,s') < ε'and is only expected to produce a 
transition back to a state y  when d(y,s) < ε , where d is a 
metric on states.  

A reversibility model for a world W  is a set of 
reversibilities for W  that are expected to hold. In practice, a 
reversibility model could be given in advance, 
communicated to the robot, learned empirically, deduced 
from knowledge about the world, or obtained in some other 
way. In the experiments described here, the robot is given a 
model for one world and uses this to learn a model for a 
refined world.  

A refinement (of states) from a world W  to a world 'W  
is a pair of functions from the states and transitions of W 'to 
those of W that respects the graph structure and labelling 
and is surjective on states. In other words, every state in W  
is the image of one or more states in 'W , which ‘refine’ the 
state in W , and the action on an edge in 'W  is given by the 
action on the edge it is sent to in W .  

For any reversibility model R  for a world W  and for 
any refinement from W  to 'W , with state function p , 
there is a refined set of reversibilites 'R  on 'W defined by  

R'= {((s,a),(s',a )) | (( p(s),a),( p(s'),a ) ∈ R}. 
To obtain a reversiblity model for the new world 'W we 
may form 'R and then remove any pairs that fail in the 
refined world. An important aspect of this procedure is that 
‘it gives the robot something to do’: the original model R  
provides a specific list of actions together with the 
circumstances in which they should be tried.  

The kind of refinement we have in mind is produced by 
extending a robot’s sensor vector. Suppose we have a world 
with states given by pairs of wheel counter values 
(w1,w2)and actions given by pairs of wheel displacement 
commands (m1,m2) . Assuming the robot is able to control 
its own wheels, this world is fairly deterministic, all actions 
are reversible and a good reversibility model R  is given by 
taking a = (−m1,−m2)when a = (m1,m2)  (for any s  and 

's ).  
Now suppose we include one proximity value (say, the 

front sensor) in the state vector ),,( 121 dww . Assuming the 
new sensor does not effect the robot’s environment, we 
obtain a refinement of the original world. The state function 
p  is the projection  



 
 

),(),,( 21121 wwdwwp = .  

When the simple model R  described above is refined 
according to this new world some of the refined 
reversibilities hold and some do not. In our experiments, the 
robot tests these refined reversibilities to discover which 
hold.  

The interesting point here is that the ones that fail 
generally correspond to collisions of some sort. Consider the 
following four cases (in which wheel counts and proximities 
are given, without loss of generality, in comparable units). 
(1) The robot does not touch anything: we obtain, say, the 
successful reversiblity  

(((0, 0, 15), (10, 10)), ((10, 10, 5), (−10, −10)),  

where the robot approaches and retreats from an object 
without touching it. (2) The robot touches an object and the 
object slides: we obtain a failed reversibility, say  

(((0, 0, 8), (10, 10)), ((10, 10, 0), (−10, −10)),  

where the robot runs into an object, pushing it 2 units 
forward, then retreats, and then finds that, while its wheel 
encoders are back to 0 as expected, its proximity sensor now 
reads 10 instead of the original 8. (3) The robot touches an 
object and its wheels slide: from the robots point of view, 
this is identical to case 3. (4) The robot touches an object 
and jams: if motor commands time-out and report success, 
adjusting the wheel encoder counts as necessary, then this 
case is again identical to case 3 (and may be thought of as a 
kind of internal sliding).  

Not only does the robot discover that it is ‘bad’ to push 
things—without ever knowing what pushing is!—but the 
refined state allows the robot to distinguish those cases in 
which ‘bad things happen’ from those in which they do not. 
Once the robot learns a reversibility model, it may use the 
model to censor its actions. Because of the non-determinism, 
we have a growing choice of definitions. A state-action pair 

),( as  is weakly (strongly) reversible in world W  , if there 
is a reversibility )),'(),,(( asas that holds weakly 
(strongly) in W  for every 's that can be reached from s by 
an a  transition. Alternatively, we could ask for just one 
such 's . In our experiments, we use, in effect, the strong 
definition, but because we pretend the world is deterministic 
by ignoring s (by taking ε'= ∞), there is no real difference.  

Note that it is our method of creating a reversibility model 
out of 'R (by pruning) that creates a ‘pushing is bad’ model. 
Alternatively, when a reversibility )),'(),,(( asas  in 

'R fails, we could try replacing the action a  instead of 
throwing out the reversibility. For example, we could 
construct the world W  )'('' WPathW = . The transitions 
in )'(WPath are paths of transitions in 'W  labelled by 
sequences of actions from 'W . The world 'W embeds in 

''W , along with 'R , but now we have sequences of actions 

to play with. In the object pushing example, a sequence b  
of actions might cause the robot to go behind an object, push 
it back 2 units, and then return to its original place in front of 
the object, so that  

(((0, 0, 8), (10, 10)), ((10, 10, 0),b ),  

holds in ''W . Or we could form ''W by add a gripping 
action and simply drag the object back 2 units. 

III. EXPERIMENTS 
This section describes two learning algorithms. One learns 
which reversibilities hold or fail when the robot’s world is 
refined by the addition of  eight proximity sensors. The other 
one is a reinforcement algorithm with a reward function that 
punishes collisions. The learning performance of the two 
algorithms are compared in two test environments, an easy 
one and a harder one, and with two sets of actions, 1D and 
2D.  

A. Implementation Details 
An action a = (m1,m2)  consists of a pair, left and right, of  
motor displacement commands expressed in the native 
wheel decoder units.  A discrete set of actions is used in the 
experiments: 
a1 = (100,100)  short step forward, 
a2 = (300,300)  long step forward, 
a3 = (−100,−100)  short step backward, 
a4 = (−300,−300) long step backward, 
a5 = (100,−100) rotate clockwise, and 
a6 = (−100,100) rotate counterclockwise. 
In the 1D experiments, we take },a,a,a{a 4321=A .  
These actions cause the robot to move back and forth in a 
straight line. In the 2D experiments, we include the turning 
actions, },,,,,{ 654321 aaaaaa=A .  
We provide the robot with the initial reversibility model 
{((x,a1),(x + (100,100),a3),

((y,a2),(y + (300,300),a4 )),

((z,a5),(z + (100,−100),a6))},

 

where x , y  and z  are any states (w1,w2) , consisting of a 
pair of wheel counter values. Because we have fixed things 
so that wheel commands always succeed, the reversibilities 
in this model always hold.  We then use (in effect) a 
refinement function p  , the projection from the set of states 
(w1,w2,d1,d2,d3,d4,d5,d6,d7,d8) , which include eight 
proximity values, to the original set of states without the 
proximity values, to induce a new set of refined 
reversibilities from the original set. The new set contains, for 
example,   
 
((s,a1),(s',a3)) =
(((w1,w2,d1,d2,d3,d4 ,d5,d6,d7,d8),a1),

((w1 + 100,w2 + 100,d'1 ,d'2 ,d'3 ,d'4 ,d'5 ,d'6 ,d'7 ,d'8 ),a3),



 
 

for any wi, di  and d'i . The learning  algorithm  then tests 
these to see which hold and which fail.  
 
For our definition of  ‘near’, we use the Hamming metric 

defined by d(s,s' ) = wi − w'i
i=1

2

 + di − d'i
i=1

8

 , 

(but because our wheel commands always succeed, and the 
original model is correct, the wheel value part of this is 
always 0.) In our set-up we know that if the robot drives 
against an object, the wheels will jam (instead of sliding) so 
we can detect collisions by watching for wheel controller 
time-outs. 
 

 
Fig. 1. Experimental setup. 
 
1)  Robot motion. The Khepera runs in a real, physical 
environment with motions that test the pairs of the refined  
reversibility model. The robot moves according to the 
following algorithm: 

1. Record current state si = (w1,w2,d1,...,d8). 
2. Choose an arbitrary reversibility from  R' 

and execute the forward action as ai. 

3. Record the state si+1 = (w'1,w'2 ,d'1 ,...,d'8 ) 
4. Execute the reverse action as ai+1. 

5. Add 2 to i. 
So the robot performs a random action, then it’s reverse 
action, and then another random action, etc.  
 
 2) Learning the reversibility model. As the robot moves 
about, it notes how well the reversibilities hold using the 
Hamming metric.  

For each forward action ai, calculate and 

store d(si,si+2). 
For the purposes of comparison with the reinforcement 
algorithm, the model is also used to predict which actions 
will be successfully reversed. When a failure is predicted, 
we note whether there is a collision during the action.  So we 
are judging the reversibility model not by what it is meant to 
be learning, but by how well this happens to predict 
collisions. 
 

1. Get the current state is  and the intended 

action ai 

2. From memory, choose a state-action pair 

(sk ,ak ) that minimizes d(sk,si).  

1. If we do not have d(sk ,si) < δ predict 

randomly. Otherwise, predict a collision 

unless d(sk,sk +1) < ε . 

2. While executing the command ai check if 

there is a collision. Store the predicted 
and the actual outcome. 

 
3) Reinforcement learning. Reinforcement learning 
algorithms are commonly used for learning in mobile 
robotics. The goal here is to implement a simple version for 
collision avoidance to compare the ungrounded reversibility 
method to a standard, grounded method. We have therefore 
implemented the reinforcement learning algorithm so that 
the robot is operating under similar conditions. First, the 
algorithm does not have a terminal state, so collision 
avoidance is considered to be a continuous task of reward 
maximization. Second, the current version of the 
reversibility policy is concerned only with immediate actions 
and reverse actions and does not work along the history of 
action sequences. Therefore we have also implemented the 
reinforcement algorithm to be concerned only with 
immediate rewards, thus with discount rate 0=γ . The 
initial value of the action value function is Q(si,ai) = 0 . 
The reward signal is defined by checking for collisions.  

r =
w1 + w2 /100, if there is no collision

−5, if there is a collision

  
   
   

 

Thus a successful action is rewarded more if it moves the 
robot for greater distance and an unsuccessful action is 
strongly penalized.  
Note that the reinforcement learning algorithm directly 
checks for collisions to calculate the reward, while the 
algorithm learning the reversibility model only aims at 
predicting if the robot can return to the initial state.  
The reinforcement learning algorithm is the following: 

1. Get the current state is  and the intended 

action ai 

2. If the current value of the action value 

function Q(si,ai) > 0, predict no 

collision. Predict a collision otherwise. 

If Q(si,ai) = 0 make a random prediction. 

3. After executing ai get the reward signal 

r . 
4. Update the action value function 

Q(si,ai ) ← αr + Q(si,ai)  where the learning 
rate α = 0.1. 

5. While executing ai, check for collisions. 

Store the predicted and the real outcome. 
 
 

B. Test environments 
In the following experiments we compared the learning of 
reversibility models to the learning of a reward function that 
discourages collisions. To find out how sensitive the 
learning algorithms are to environmental conditions, the 
tests are conducted in two environments. Environment II is 
smaller than Environment I, the collisions with walls at each 



 
 

move are more probable. Also the walls are not 
perpendicular as in Environment I.  In both environments the 
algorithms are implemented in 1D and 2D to get the estimate 
of their scalability. In 1D the robot can move only back and 
forth, while in 2D turning is permitted. 

IV. RESULTS 
 
As it was specified in the previous section, the robot 
operates by executing reversed and random actions. The 
reversed actions are determined according to the initial 
reversibility model. The goal of the learning algorithms is to 
observe and learn to predict the outcomes of the actions. 
These predictions are then compared to the real outcome of 
the action (determined by detecting collisions) and the 
success rate of both of the policies is recorded. The tests are 
conducted in 1D environment where only the back and forth 
moves are permitted and in 2D where turning actions are 
also included. 
Fig. 2 – Fig. 5 represent the test results in both test 
environments. All charts represent the average correctness of 
predictions for every successive 100 actions for both 
prediction policies. 
From Fig. 2 and Fig. 4 it can be seen that in both 
environments, the robot learns very fast to avoid collisions 
in 1D, the rate of successful predictions reaches 80%-90% 
during the first 200-300 steps and the learning problem is 
equally trivial for both learning algorithms.  
In 2D, the turning actions make the learning problem more 
complicated, both algorithms reaching similar accuracy 
around 1900-2100 steps. Environment I is more “friendly” 
for the robot while in Environment II the collisions are much 
more likely to occur. 
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Fig. 2. Test results in environment I, in 1D 
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Fig. 3. Test results in environment I, in 2D 
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Fig. 4. Test results in environment II, in 1D 
 

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
Nr. of actions (x100)

C
or

re
ct

 p
re

di
ct

io
ns

 (%
)

Reinforcement learning Reversibility model  
 
Fig. 5. Test results in environment II, in 2D 
 
Also, during the tests in Environment II the wheels 
occasionally got stuck on the uneven surface. These 
occasions can be seen on the charts around 1400-1700 steps 
in 1D (Fig.4) and 3700-4100 in 2D (Fig.5) with the sharp 
downward peaks of the prediction rates. It appears that 
reinforcement learning adapts and recovers better in these 
occasions. However, this is caused more by the method we 
use to determine the prediction rate than the failure of the 
method of learning the reversibility model. For the robot 
with the blocked wheels the reversibility of actions is 
perfect, since the robot certainly ends up in the same state it 
starts from. However, if this success of the prediction is 
judged by whether or not the wheels jam, the prediction is 
wrong.  



 
 

The general conclusion drawn from the experimental results 
is that both methods learn to predict collisions with 
comparable speed. The reinforcement learning algorithm 
uses a reward signal determined by the outcome of an action 
whereas the reversibility policy uses the reversibility 
measure to refine the initial reversibility model.  
The reversibility model is learned with a roughly similar 
speed in Environment I whereas in Environment II 
reinforcement learning policy performs slightly better. Also, 
upscaling from 1D to 2D environment is equally efficient for 
both approaches. 
The most important comment is that the aim of this research 
is not to develop a competitive learning technique for 
collision avoidance but rather to introduce a new general 
principle that can be used in combination with existing 
methods. Our method does not learn how to avoid obstacles, 
it learns how to repeat its actions. An important result of the 
experiments is that a useful behaviour derived from a 
general abstract principle can be learned as fast as by an 
established method for learning collision avoidance.  

V. CONCLUSIONS 
 
This paper introduces the concept of reversibility for 
learning robots. We show that reversibility models can be 
used to learn a useful new behaviour. The experiments 
verify the performance of the reversibility method against a 
well-established method of learning commonly used in 
robotics. The results show that both of the methods converge 
to obstacle avoidance behaviour.  
The most general conclusion drawn from the experimental 
results is that the efficiency of the policy of reversibility is 
comparable to reinforcement learning. Both methods learn 
more or less equally, converging to satisfactory 
performance.  The basic difference of these methods is that 
the reinforcement learning algorithm uses a reward signal 
explicitly designed to make the robot avoid obstacles. The 
policy we introduce, uses a reversibility measure to learn a 
reversibility model, and yet the robot learns the useful 
behaviour of collision avoidance.  
Based on these experimental results we speculate that the 
concept of reversibility could generate a variety of useful 
behaviours depending on the properties of the environment. 
We surmise, that for example for a robot, placed initially 
close to an object or wall, the robot using reversibility 
models might discover behaviours like “do not leave the 
territory” or “stay in the vicinity of guidlines”. Our future 
experiments are planned to check this hypothesis and find 
more evidence concerning the robustness of the principle.  
Another hypothesis we are planning to test is whether 
learning algorithms can be accelerated by using reversibility 
models. Generally, learning algorithms converge to a stable 
behaviour by repeating actions that lead from one state to 
another. It is not explained, however, how the robot gets 
back to the state it wants to repeat. Knowing the reversibility 
model, it may be easier to guide the learning algorithm to 
faster convergence.   
We also suggest that reversibility models could be used in 
combination with formal reasoning methods,  such as task or 

path planning, where the plans can be checked for 
reversibility. For mobile robots such a reversibility check 
could, for example, guarantee safe homing or safe 
exploration.  We suggest that the concepts introduced in this 
paper may provide handy and simple guidelines for building 
safe and reliable robots. 
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